结合图像分层与暗通道的雾霾图像增强
DOI:
CSTR:
作者:
作者单位:

贵州大学 大数据与信息工程学院 贵阳 550025

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金(61865002);国家重点研发计划重点专项(2021YFE0107700);贵州大学“双一流”研究重大项目(GDSYL2018001)资助


Haze image enhancement combining image layering and dark channel
Author:
Affiliation:

School of Big Data and Information Engineering, Guizhou University, Guiyang 550025,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决雾霾天气下图像的去雾与增强问题,本文提出了一种结合图像分层与暗通道的去雾增强算法。该算法首先对输入图像建立暗通道模型,估计出大气光值与透射率,对图像进行去雾复原,接下来对图像进行双边滤波变换,将低频图像信息中像素的灰度级地区进行拉伸或压缩,将高频图像信息进行归一化处理,然后利用归一化的直方图与非线性S曲线进行灰度变换,最后利用加权融合方式将低频与高频图像信息进行有效地合并,得到输出图像。实验结果表明,该算法在三组图像中的平均梯度与信息熵的均值分别是0.0734,7.1733,均优于其余三种算法,并且该算法的对比度与时耗的均值分别为422.6与0.76,具有一定的可行性。

    Abstract:

    In order to solve the problem of image defogging and enhancement in haze weather, this paper proposes a defogging and enhancement algorithm that combines image layering and dark channels. The algorithm first establishes a dark channel model for the input image, estimates the atmospheric light value and transmittance, and restores the image by defogging. Next, the image is subjected to bilateral filtering and transformation to stretch the gray-level area of the pixels in the low-frequency image information. Or compress, normalize the high-frequency image information, then use the normalized histogram and nonlinear S-curve to perform gray-scale transformation, and finally use the weighted fusion method to effectively merge the low-frequency and high-frequency image information to obtain Output image. Experimental results show that the average gradient and information entropy of the algorithm in the three sets of images are 0.0734 and 7.1733, respectively, which are better than the other three algorithms, and the average contrast and time consumption of the algorithm are 422.6 and 0.76, respectively. It is feasible.

    参考文献
    相似文献
    引证文献
引用本文

彭熙舜,陆安江,龙纪安,丁洁,唐鑫鑫.结合图像分层与暗通道的雾霾图像增强[J].电子测量技术,2022,45(2):123-128

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-17
  • 出版日期:
文章二维码