基于改进DDPG的中央空调负荷预测方法研究
DOI:
CSTR:
作者:
作者单位:

上海海事大学商船学院 上海 201306

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

上海科学技术委员会资助项目(18040501800);上海市科技计划“上海船舶智能运维与能效监控工程技术研究中心”项目资助(20DZ2252300)


Research on load forecasting of central air-conditioning system based on improved Deep Deterministic Policy Gradient
Author:
Affiliation:

Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为降低因节假日引起的建筑内部得热对大型中央空调系统负荷预测精度的负面影响,以上海世博园区某办公建筑群作为研究区域,引入新的日期特征DPH,在现有深度确定性策略梯度网络结构的基础上,利用长短期记忆神经网络替换深度确定性策略梯度的全连接神经网络,提出基于循环确定性策略梯度的大型中央空调系统冷负荷预测方法。研究结果表明,考虑DPH日期特征的改进算法预测模型能够捕捉因节假日引起的负荷变化趋势,有效提高预测准确性,预测精度达0.951,误差值为7.08%。

    Abstract:

    To reduce the negative impact of inner heat gain of buildings caused by holidays on the accuracy of load forecasting in large central air-conditioning systems, an office building complex in Shanghai Expo Park is taken as the research area, a cooling load forecasting method for large central air-conditioning system based on improved Deep Deterministic Policy Gradient is proposed. New date-related feature named Days from Previous Holiday is introduced, the fully connected neural network in Deep Deterministic Policy Gradient structure is replaced by Long Short-Term Memory neural network, and a load forecasting model based on Recurrent Deterministic Policy Gradient is constructed. The experimental results show that the improved prediction model within Days from Previous Holiday can timely capture the load change trend caused by holidays, effectively improve the prediction accuracy which is 0.951 and the error value is 7.08%.

    参考文献
    相似文献
    引证文献
引用本文

贾静,高文忠.基于改进DDPG的中央空调负荷预测方法研究[J].电子测量技术,2022,45(3):85-91

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-14
  • 出版日期:
文章二维码