基于深度学习的人群计数算法综述
DOI:
CSTR:
作者:
作者单位:

1.河南工业大学 信息科学与工程学院 郑州 450001;2.河南省粮食信息处理国际联合实验室 郑州 450001

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:


Review of crowd counting algorithms based on deep learning
Author:
Affiliation:

1. Henan University of Technology School of Information Science and Engineering, ZhengZhou 450001, China;2. Henan International Joint Laboratory of Grain Information Processing, Zhengzhou 450001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人群计数在视频监控、公共安全、智能商业等许多领域都有广泛的应用,近年来,随着深度学习的不断发展,人群计数已经成为计算机视觉领域研究的热点之一。本文根据提取特征方式的不同,将人群计数分为两类一类是传统方法,另一类是基于深度学习的方法,对基于卷积神经网络的方法进行重点分析和介绍;进一步介绍了人群计数领域的基准数据集和其他代表性数据集,实验结果表明,在人群密集和尺度变化较大的场景,基于卷积神经网络的方法优于传统方法,在尺度变化较大、人群较复杂的场景中多列网络比单列网络计数更加准确,效果更好;最后讨论了算法的未来发展方向。

    Abstract:

    Crowd counting is widely used in video surveillance, public security, intelligent business and many other fields. In recent years, with the continuous development of deep learning, crowd counting has become one of the hot topics in the field of computer vision. In this paper, according to the different feature extraction methods, crowd counting is divided into two categories: one is traditional method, the other is based on deep learning method, and the method based on convolutional neural network is analyzed and introduced. Further introduces the population count in the field of benchmark data sets and other representative data sets, the experimental results show that the larger changes in the crowded and scale, based on the convolution of the neural network method is superior to the traditional method, the scale change is bigger, more complex scenarios crowd more columns than a single network count more accurate, more effective; Finally, the future development direction of the algorithm is discussed.

    参考文献
    相似文献
    引证文献
引用本文

田月媛,邓淼磊,高辉,张德贤.基于深度学习的人群计数算法综述[J].电子测量技术,2022,45(7):152-159

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-14
  • 出版日期:
文章二维码