基于深度学习与注意力机制的化工故障分类
DOI:
CSTR:
作者:
作者单位:

1.西安工业大学电子信息工程学院 西安 710021; 2.西安理工大学陕西省复杂系统控制与智能信息处理重点实验室 西安 710048

作者简介:

通讯作者:

中图分类号:

TP391.5

基金项目:

陕西省重点研发计划一般项目(2021GY-067)


Chemical fault classification based on deep learning and attention mechanism
Author:
Affiliation:

1.School of Electronic Information Engineering, Xi'an Technological University, Xi'an 710021, China; 2.Key Laboratory of Shanxi Province for Complex System Control and Intelligent Information Processing, Xi'an University of Technology, Xi'an 710048, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的故障诊断方法在处理高维度且动态特征明显的化工生产过程中观测的数据时,存在无法识别长时间依赖关系、精确度不够的问题,本文对长短时记忆模型进行改进,提出了一种基于深度学习与attention机制的分类模型,以田纳西-伊斯曼仿真平台的仿真数据作为研究对象,通过小波阈值去噪法对数据进行预处理,再对模型分类效果进行验证,比较了本文模型与改进前的模型,最后通过t-sne算法绘制样本数据及在模型各层输出特征向量在二维空间的分布图。实验结果表明,改进后的深度学习模型,对故障分类时能达到92.71%的召回率与93.05%的准确率,相对改进前的模型分别提高了16.84%与13.66%,对数据特征的学习效果更好,更适用于化工数据。

    Abstract:

    In view of the problems that the existing fault diagnosis methods cannot identify the long-time dependence relationship and have insufficient precision when processing the observed data in the chemical production process with high dimensions and obvious dynamic characteristics, the long-term memory model is improved in this paper, and a classification model based on depth learning and attention mechanism is proposed, Then the model classification effect is verified and the model in this paper is compared with the model before improvement. Finally, the sample data is drawn and the distribution of feature vectors in two-dimensional space is output at each level of the model by t-sne algorithm. The experimental results show that the improved in-depth learning model can achieve a recall rate of 92.71% and an accuracy rate of 93.05% for fault classification, which are improved by 16.84% and 13.66% respectively compared with the model before the improvement. The learning effect on data characteristics is better, and it is more suitable for chemical data.

    参考文献
    相似文献
    引证文献
引用本文

唐颖川,黄姣茹,钱富才.基于深度学习与注意力机制的化工故障分类[J].电子测量技术,2022,45(4):168-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-12
  • 出版日期:
文章二维码