基于RLMD与BAS-BP的柴油机故障诊断研究
DOI:
CSTR:
作者:
作者单位:

1.中北大学 机械工程学院,太原 030051;2.中北大学 系统辨识与诊断技术研究所,太原 030051

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

内燃机可靠性国家重点实验室基金项目(skler-201911)资助


The research of diesel engine fault diagnosis based on RELM and BAS-BP
Author:
Affiliation:

1.School of Mechanical Engineering, North University of China, Taiyuan 030051, China; 2.System Identification and Diagnosis Technology Research Institute, North University of China, Taiyuan 030051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高柴油机水泵盖体故障信号的特征提取能力,快速有效地诊断出故障类型,提出了鲁棒的局部均值分解算法(RLMD)与天牛须算法(BAS)优化的BP神经网络相结合的故障诊断方法。首先,对采集的信号序列进行小波阈值和RLMD双重降噪,再根据斯皮尔曼相关系数筛选出与原信号相似度高的信号分量(PF);然后,求出每个分量的小波能量熵、小波奇异值熵作为故障特征;最后,利用BAS优化的BP神经网络进行故障诊断和识别。同时,与GA-BP、PSO-BP优化的神经网络相比较。结果表明:BAS-BP在各方面都优于PSO-BP、GA-BP神经网络,且BAS-BP的故障分类准确率可达到98.90%。

    Abstract:

    In order to improve the feature extraction ability of the fault signal of diesel engine water pump cover and diagnose the fault type quickly and effectively, a fault diagnosis method combining robust local mean decomposition algorithm (RLMD) with BP neural network optimized by BAS algorithm is proposed. Firstly, the collected signal sequence is denoised by wavelet threshold and RLMD, and then the signal components (PF) with high similarity with the original signal are screened out according to the Spearman correlation coefficient. Then, the wavelet energy entropy and wavelet singular value entropy of each component are calculated as fault features. Finally, the BP neural network optimized by BAS is used for fault diagnosis and fault pattern recognition. At the same time, compared with neural networks optimized by GA-BP and PSO-BP. The results show that BAS-BP is superior to PSO-BP and GA-BP neural network in all aspects, and the fault classification accuracy of BAS-BP can reach 98.90%.

    参考文献
    相似文献
    引证文献
引用本文

徐轟钊,许 昕,潘宏侠.基于RLMD与BAS-BP的柴油机故障诊断研究[J].电子测量技术,2022,45(3):1-6

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-14
  • 出版日期:
文章二维码