室内机器人TDOA异步无参测距定位方法研究
DOI:
CSTR:
作者:
作者单位:

江苏科技大学 电子信息学院 镇江 212003

作者简介:

通讯作者:

中图分类号:

TP242

基金项目:

国家自然科学基金资助项目(61371114),镇江市科技计划重点研发社会发展项目(SH2020015)


Research on indoor robot TDOA asynchronous no reference ranging location method
Author:
Affiliation:

School of Electronics and Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对超宽带室内机器人定位系统中TDOA的时钟难以同步以及测量存在各种干扰问题,提出一种室内机器人TDOA异步无参测距的定位新方法。该方法将实际测量计算而来的时间作为校正因子,为主基站构建异步时钟下无参考节点的测距算法模型,由主、从基站的测量信息可直接计算出机器人到达距离差;提出关联权值滤波算法获得到达距离差状态矩阵,有效降低信号干扰。并从测量性能、测距及定位等方面进行误差分析。实验结果表明,测距精度98%维持在10cm以内,且不会随着长时间运行发生测量偏移,具有较好的定位精度,可满足室内机器人的定位需求。

    Abstract:

    Aiming at the difficulty of synchronizing the clock of TDOA in the ultra-wideband indoor robot positioning system and the various interference problems in measurement, a new method for indoor robot TDOA asynchronous non-reference node ranging is proposed. This method uses the time calculated from the actual measurement as a correction factor to construct a ranging algorithm model for the master base station without a reference node under an asynchronous clock. The measurement information of the master and slave base stations can directly calculate the robot's arrival distance difference; propose an association weight The new algorithm of value filtering combines the moving average to obtain the arrival distance difference state matrix, which effectively reduces signal interference. And from the measurement performance, ranging and positioning and other aspects of error analysis. Experimental results show that 98% of the ranging accuracy is maintained within 10cm, and measurement deviation will not occur with long-term operation, and it has good positioning accuracy, which can meet the positioning needs of indoor robots.

    参考文献
    相似文献
    引证文献
引用本文

冷加俊,马国军.室内机器人TDOA异步无参测距定位方法研究[J].电子测量技术,2022,45(2):1-6

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-17
  • 出版日期:
文章二维码