宽视角相机相对姿态测量方法研究
DOI:
CSTR:
作者:
作者单位:

1中北大学山西省信息探测与处理重点实验室 太原 030051 2中北大学信息与通信工程学院 太原 030051

作者简介:

通讯作者:

中图分类号:

TP183;TP277

基金项目:

国家自然科学基金资助项目(61801437,61871351, 61971381);山西省研究生创新项目资助:2021Y609


Research on relative attitude measurement method of wide-FOV camera
Author:
Affiliation:

1 Shanxi Key Laboratory of Signal Capturing and Processing, North University of China, Taiyuan 030051, China 2 School of Information and Communication Engineering, North University of China, Taiyuan 030051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前相机姿态估计方法都存在视觉局限性的问题,本文使用鱼眼镜头作为视觉传感器进行姿态估计,进而实现宽视角相机相对姿态估计。但鱼眼成像在具有宽视场优点的同时,伴随着严重的非线性畸变导致其在不同的方位和距离下具有不同畸变扩散的问题,为此本文提出了一种直接利用鱼眼图像的非线性进行相机相对姿态测量的方法。首先,构建鱼眼数据集kitti_FE;其次,使用卷积神经网络进行特征提取后结合长短时记忆网络进行双向循环训练,实现相机相对姿态的端对端输出;最后利用迁移学习的方法对实际场景进行相机姿态估计。为了验证本文所提方法的鲁棒性和精确度,在相同实际场景下,利用本文方法分别与现有框架CNN、DeepVO和CNN-LSTM-VO-cons进行对比。实验表明,本文方法分别比现有框架的相机姿态估计精度提高了32%、29%和25%,而且在高速运动下本文方法更具有稳定性。

    Abstract:

    In view of the visual limitations of the current camera attitude estimation methods. In order to realize the relative attitude estimation of wide-FOV( Fields of view camera), this paper used fisheye lens as visual sensor for attitude estimation. While fisheye imaging has the advantages of a wide-FOV, it is accompanied by serious nonlinear distortions, which leads to the problem of different distortion diffusion at different azimuths and distances. Therefore, this paper proposed a method to directly use the non-linear characteristics of the fisheye image to measure the relative pose of the camera. First, established the fisheye dataset kitti_FE; Secondly, used convolutional neural network for feature extraction and then combined with Long short-term memory network for bidirectional loop training to achieve the end-to-end output of the relative posture of the camera; Finally, the method of transfer learning was used to estimate the pose of the fisheye camera in the actual scene. Experiments show that the proposed method is 32%、29% and 25% higher than the camera pose estimation accuracy under the existing frameworks of CNN 、DeepVO and CNN-LSTM-VO-cons, respectively, and the proposed method is more stable under high-speed motion.

    参考文献
    相似文献
    引证文献
引用本文

李咸静,王鉴,郭锦铭,张璇,韩焱.宽视角相机相对姿态测量方法研究[J].电子测量技术,2022,45(4):107-113

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-12
  • 出版日期:
文章二维码