改进Faster R-CNN的微型扁平电机FPC表面焊点缺陷检测
DOI:
CSTR:
作者:
作者单位:

1.江苏安全技术职业学院机械工程学院,徐州 江苏 221000;2. 江苏科技大学机械工程学院,镇江 江苏 212100

作者简介:

通讯作者:

中图分类号:

TN919

基金项目:


Defect Detection of FPC surface welding spot defects of miniature flat motor based on faster R-CNN
Author:
Affiliation:

1. School of Mechanical Engineering, Jiangsu College of Safety Technology, Xuzhou Jiangsu, 221011, China. 2. School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang Jiangsu, 212100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前微型扁平电机制造厂仍采用人工观察法对电机FPC板焊点的焊接质量进行检测,其检测准确率低、速度慢。针对这一问题,提出了一种基于改进Faster R-CNN的缺陷分类检测方法。首先通过多尺度特征融合网络对VGG16的最后两层网络进行融合后,代替原Faster R-CNN中区域候选网络的输入特征图,然后从三个不同深度的多尺度特征融合算法比较改进后网络的准确率、召回率和分数。试验结果表明:改进后的两层多尺度融合特征图代入模型,其缺陷分类检测准确率均值为91.89%,比传统模型增加了7.72%;与其他二种模型相比,改进后的模型分类检测准确率和精度是最高的。

    Abstract:

    At present, micro flat motor manufacturers still use manual observation of motor FPC surface welding quality for classification, its detection accuracy is low, slow speed. To solve this problem, a defect classification detection method based on improved Faster R-CNN was proposed. Firstly, the last two layers of VGG16 are fused by multi-scale feature fusion network to replace the input feature graph of the regional proposal network in the original Faster R-CNN. Then, the accuracy, recall rate and score of the network are compared from three multi-scale feature fusion algorithms with different depths. The experimental results show that the average accuracy of defect classification detection of the improved two-layer multi-scale fusion feature map is 91.89%, 7.72% higher than that of the traditional model. Compared with the other two models, the improved model has the highest classification detection accuracy and precision.

    参考文献
    相似文献
    引证文献
引用本文

郁岩,齐继阳.改进Faster R-CNN的微型扁平电机FPC表面焊点缺陷检测[J].电子测量技术,2022,45(7):146-151

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-14
  • 出版日期:
文章二维码