基于双通道混合网络融合支持向量机的电容层析成像流型辨识
DOI:
CSTR:
作者:
作者单位:

中国民航大学 电子信息与自动化学院 天津 300300

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家基金面上项目(61871379资助


Flow pattern Identification of Capacitance Tomography Based on dual-channel hybrid network fusion support vector machine
Author:
Affiliation:

College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对两相流流型辨识精度低的问题,提出一种基于双通道混合网络融合支持向量机的流型辨识算法。通过多尺度卷积核对电容向量进行多尺度特征提取丰富特征层信息,利用压缩激励网络(squeeze-and-excitation networks,SENet)关注卷积核通道上重要特征张量,调整各通道的重要占比,此外引入多头自注意力机制对电容向量的深度特征进行学习。将带有SENet的多尺度卷积通道与多头自注意力通道进行特征融合形成双通道辨识模型,最后将双通道模型有效捕捉到的电容向量特征的特征送入支持向量机中进行训练并测试。仿真实验结果表明,相比于BP神经网络、SVM、1DCNN算法,所提算法在流型辨识中的平均辨识率显著提升,高达98.6%。

    Abstract:

    To solve the problem of low identification accuracy of two-phase flow pattern, a flow pattern identification algorithm based on two-channel hybrid network fusion support vector machine was proposed. Multi-scale feature extraction of rich feature layer information was carried out by multi-scale convolution check of capacitance vector. Squeeze-and-excitation networks was used to focus on the important feature tensor of convolutional kernel channel and adjust the importance proportion of each channel. In addition, multi-scale attention mechanism was introduced to learn the depth feature of capacitance vector. The multi-scale convolutional channel with SENet and multi-attention channel were fused to form a two-channel identification model. Finally, the features of capacitance vector effectively captured by the two-channel model were sent to support vector machine for training and testing. Simulation results show that compared with BP neural network, SVM and 1DCNN algorithms, the average identification rate of the proposed algorithm in flow pattern identification is significantly improved, reaching 98.6%.

    参考文献
    相似文献
    引证文献
引用本文

马 敏,李继伟,曾 田.基于双通道混合网络融合支持向量机的电容层析成像流型辨识[J].电子测量技术,2022,45(4):153-159

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-12
  • 出版日期:
文章二维码