基于三维激光扫描点云配准的目标位姿测量
DOI:
CSTR:
作者:
作者单位:

上海大学通信与信息工程学院 上海 200444

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金青年基金项目(No.61402277)资助


Target pose measurement based on matching of 3D laser scanning point cloud
Author:
Affiliation:

School of Communication and Information Engineering, Shanghai University, Shanghai 200444,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    地外天体着陆探测是我国深空探测的重要形式和方法,针对地面探测模拟训练系统中探测车位姿提取的需求,提出了一种利用激光扫描仪和标靶球结合的方法进行特征识别,拟合出探测车的位姿数据,并建立地面模拟训练系统。首先对激光扫描数据进行滤波预处理去除点云中离群点,然后选择适当的参数对数据进行重采样。通过基于分类改进的区域增长法对点云进行分割,筛选出指定数量范围的点集并拟合多个标靶球位置信息以建立局部坐标系。通过实验数据分析,标靶球拟合精度满足3mm最大允许误差,点云处理速度得到有效提升,验证了特征识别方法的准确性和高效性。最后通过坐标系转换估计出探测车的位姿矩阵信息。

    Abstract:

    Landing exploration of extraterrestrial objects is an important form and method of deep space exploration in China. To extract the pose of the probe rover in the ground exploration simulation training system, an approach of combining laser scanner and target ball is proposed to fit the position and attitude data of the rover, and the ground simulation training system is established. First of all, the laser scanning data is preprocessed to remove the outliers of the point cloud, and then the appropriate parameters are selected for resampling the data. The point cloud is segmented using the improved region growth method based on classification, a set of prespecified number of points are adopted to fit multiple target spheres and a local coordinate system is established. Through the analysis of the experimental data, the fitting accuracy of the target sphere meets the maximum allowable error of 3mm, and the point cloud processing speed is effectively improved, which verifies the accuracy and efficiency of the feature recognition method. Finally, the position and the attitude matrix of the rover is obtained through coordinate transformation to calibrate the camera accuracy.

    参考文献
    相似文献
    引证文献
引用本文

朱晓强,陈琦.基于三维激光扫描点云配准的目标位姿测量[J].电子测量技术,2022,45(4):13-18

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-12
  • 出版日期:
文章二维码