基于轻量级卷积神经网络的手势识别检测
DOI:
CSTR:
作者:
作者单位:

1.河北工业大学 电子信息工程学院 天津 300401; 2.电子与通信工程国家级实验教学示范中心(河北工业大学) 天津 300401

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金(51977059);河北省自然科学基金(E2020202042)


Gesture recognition and detection based on lightweight convolutional neural network
Author:
Affiliation:

1.School of Electronics Information Engineering, Hebei University of Technology, Tianjin 300401, China; 2.National Demonstration Centerfor Experimental (electronic and Communication Engineering) Education (Hebei University of Technology), Tianjin 300401, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基于深度学习的手势识别模型参数量大、训练速度缓慢且对设备要求高,增加了成本的问题,提出了一种基于轻量级卷积神经网络的手势识别检测算法。首先利用Ghost模块设计轻量级主干特征提取网络,减少网络的参数量和计算量;通过引入加权双向特征金字塔网络改进特征融合网络,提升网络检测精度;最后使用CIoU损失函数作为边界框回归损失函数并加入Mosaic数据增强技术,加快模型收敛速度提升网络的鲁棒性。实验结果表明,改进后的模型大小仅为17.9M,较原YOLOv3模型大小减小了92.4%,平均精确度提高了0.6%。因此新的检测方法在减少模型参数量的同时,还可保证模型的检测精度和效率,为手势识别检测提供理论参考。

    Abstract:

    Aiming at the problems of deep learning-based gesture recognition model with large parameters, slow training speed and high equipment requirements, which increase the cost, a gesture recognition and detection algorithm based on lightweight convolutional neural network is proposed. First, use the Ghost module to design a lightweight backbone feature extraction network to reduce the amount of parameters and calculations of the network; improve the feature fusion network by introducing a weighted two-way feature pyramid network to improve the network detection accuracy; finally use the CIoU loss function as the bounding box regression loss function And add Mosaic data enhancement technology to speed up model convergence and improve the robustness of the network. Experimental results show that the size of the improved model is only 17.9M, which is 92.4% smaller than the original YOLOv3 model, and the average accuracy is increased by 0.6%. Therefore, the new detection method can not only reduce the amount of model parameters, but also ensure the accuracy and efficiency of the model, providing a theoretical reference for gesture recognition and detection.

    参考文献
    相似文献
    引证文献
引用本文

牛雅睿,武一,孙昆,卢昊,赵普.基于轻量级卷积神经网络的手势识别检测[J].电子测量技术,2022,45(4):91-98

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-12
  • 出版日期:
文章二维码