基于NSCT的焦点度量优化和ISML多聚焦图像融合
DOI:
CSTR:
作者:
作者单位:

南京信息工程大学电子与信息工程学院 南京 210044

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:


Focus Measure Optimization and ISML Multi-focus Image Fusion Based on NSCT
Author:
Affiliation:

Electronics and information engineering college,Nanjing university of information science and technology, Nanjing 210044,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对成像设备的景深有限,采集图像部分失焦的问题,提出了一种有效的多聚焦图像融合算法,进一步提高图像的对比度和清晰度。首先用NSCT将源图像分解为近似子带和详细子带;然后采用焦点度量优化策略(FMO)和修正拉普拉斯变换(ISML)分别合并近似子带系数和详细子带系数;最后进行逆NSCT得到融合后的图像。利用灰度多聚焦图像数据集进行实验,并与常用的多聚焦图像融合算法对比分析得出,本算法在融合图像的视觉效果和7种常用的客观评价指标都具有更优越的性能。

    Abstract:

    The depth of field for imaging equipment is limited, the problem of out-of-focus of part of the acquisition image.An effective multi-focus image fusion algorithm is proposed, to further improve the contrast and sharpness of fused image. Firstly,the source image is decomposed into approximate subbands and detailed subbands by NSCT; Secondly,the FMO and ISML were used to combine the approximate subband coefficients and the detailed subband coefficients respectively;finally, the fused image is obtained by inverse NSCT. Experiments were conducted using a gray scale multi-focus image dataset, and comparative analysis with commonly used multi-focus image fusion algorithm shows that, the proposed fusion algorithmhas superior performance in terms of visual inspection and 7 commonly used objective evaluation indicators.

    参考文献
    相似文献
    引证文献
引用本文

姚海,秦华旺.基于NSCT的焦点度量优化和ISML多聚焦图像融合[J].电子测量技术,2022,45(4):85-90

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-12
  • 出版日期:
文章二维码