双重注意力引导的弱监督雨滴图像增强
DOI:
CSTR:
作者:
作者单位:

1. 上海大学 特种光纤与光接入网重点实验室 特种光纤与先进通信国际合作联合实验室 上海 200444; 2. 上海三思系统集成研究所 上海 201100

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

高等学校学科创新引智计划(111)资助(D20031)、十三五国家重点研发计划(2017YFB0403500)资助


Weakly supervised raindrop image enhancement guided by dual attention
Author:
Affiliation:

1. Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China; 2. Shanghai Sansi Institute for System Integration, Shanghai 201100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于深度学习的雨滴图像增强方法普遍存在高度依赖配对样本数据集,雨滴去除后图像背景细节模糊等问题。对此,本文提出一种双重注意力引导的弱监督雨滴图像增强方法。该方法设计构建弱监督雨滴图像增强网络,仅需来自雨滴图像域与干净图像域的图像进行训练,可有效降低对配对样本数据集的依赖性;同时,将双重注意力引入生成网络,引导特征提取与多分支掩模生成,掩模同输入的雨滴图像融合后,获得背景清晰的干净图像,实现雨滴图像增强。实验结果表明,该方法在Raindrop数据集上PSNR达到27.0711 dB,SSIM达到0.8996,更好地保留了图像背景细节与颜色信息,证明该方法的可行性与有效性。

    Abstract:

    Raindrop image enhancement methods based on deep learning generally have some problems, such as highly dependent on aligned sample datasets, and blurred background detail after removing raindrops. In this regard, this paper proposes a weakly supervised raindrop image enhancement method guided by dual attention. This method designs and constructs a weakly supervised raindrop image enhancement network. It only needs images from the raindrop image domain and the clean image domain for training, which can effectively reduce the dependence on the aligned sample datasets. At the same time, dual attention is introduced into the generation network to guide the feature extraction and multi-branch masks generation. After the masks are fused with the input raindrop image, a clean image with a clear background is obtained, and the input raindrop image is enhanced. The experimental results show that the PSNR is 27.0711 dB and the SSIM is 0.8996 of the proposed method respectively on the Raindrop. The background details and color information of the image are better preserved than the previous methods, which prove the feasibility and effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

蒲燕虹,张金艺,姜玉稀.双重注意力引导的弱监督雨滴图像增强[J].电子测量技术,2022,45(4):79-84

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-12
  • 出版日期:
文章二维码