心电与心音信号同步智能检测方法与识别技术研究
DOI:
CSTR:
作者:
作者单位:

1. 中北大学 仪器科学与动态测试教育部重点实验室 山西 太原 030051; 2. 山西工学院 山西 朔州 036000

作者简介:

通讯作者:

中图分类号:

TH776

基金项目:

国家自然科学基金青年基金(62001430 )资助;2020年度山西省研究生教育创新项目(2020BY101 )资助


The Research on Synchronous Detection Methods and Intelligent Recognition Technology of ECG and Heart Sounds
Author:
Affiliation:

1.North University of China, Key Laboratory of Instrumentation Science and Dynamic Measurement, Taiyuan 030051, China; 2.Shanxi College of Technology,Shuozhou 036000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    心血管疾病的早期准确检测对降低心血管疾病的死亡率具有至关重要的意义。因此,针对心血管疾病早期检测中常用听诊与心电检测方式所存在的数字化与同步联合检测技术瓶颈,研制了基于MEMS矢量水听器芯片的高灵敏心音探头,并对其集成化设计出5路心音和标准12导联心电同步采集仪器系统。测试结果表明:所研制的心音传感探头的信噪比达40dB,优于3M听诊器;同时该系统所采集获取的QRS波心电信号与S1、S2心音信号特征峰点同步,波形特征准确清晰,实验测试实现了心音的数字化检测与病症异常特征的直观辨识。此外,优化系统以期具备智能化检测诊断能力,还搭建了云服务器与数据库,并设计开发了心音智能诊断算法。通过对采集的临床病例数据测试集进行测试,结果表明:5分类心音智能识别的准确率达90%以上。因此,该检测系统对辅助医师进行心血管疾病的早期数字化检测与联合诊断具有重要的技术价值和临床指导意义。

    Abstract:

    Early and accurate detection of cardiovascular disease is of significant importance to reduce the mortality caused by it. In view of the digital and synchronous combined detection technology bottlenecks in the common auscultation and ECG detection methods used in the early detection of cardiovascular diseases, a highly sensitive heart sound probe based on the MEMS vector hydrophone chip was developed and integrated a 5-road heart sounds and standard 12-lead ECG simultaneous acquisition instrument system. The test results show that the developed heart sound sensor probe has a signal-to-noise ratio of 40dB, which is better than the 3M stethoscope; and the QRS wave ECG signal collected by the system is synchronized with the characteristic peaks of the S1 and S2 heart sound signals, and the waveform characteristics are accurate and clear. The test has realized the digital detection of heart sounds and the intuitive identification of abnormal characteristics of the disease. In addition, the system is optimized to have intelligent diagnosis capabilities. Therefore, a cloud server and database have also been built, and an intelligent diagnosis algorithm for heart sounds has been designed and developed. Through testing on the collected clinical case, the results show that the accuracy of the five-category heart sound intelligent recognition is over 90%. Therefore, the detection system has important technical value and clinical guiding significance for assisting physicians in the early digital detection and joint diagnosis of cardiovascular diseases.

    参考文献
    相似文献
    引证文献
引用本文

臧俊斌,周宸正,向梦辉,张志东,薛晨阳.心电与心音信号同步智能检测方法与识别技术研究[J].电子测量技术,2022,45(3):163-168

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-14
  • 出版日期:
文章二维码