基于Mask R-CNN实例分割的机械零件识别方法研究
DOI:
CSTR:
作者:
作者单位:

1.广东省珠海市质量计量监督检测所 广东 珠海 519060 2.华南理工大学 机械与汽车工程学院 广东 广州 510640

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

广东省市场管理监督局项目(2021CZ17)、广东省重点领域研发计划项目(2019B010154003)资助


Research on recognition method of mechanical parts based on Mask R-CNN instance segmentation
Author:
Affiliation:

1.Guangdong Zhuhai Supervision Testing Institute of Quality and Metrology, Zhuhai 519060,.China; 2.School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640,.China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    零件识别是机械部件装配、装箱的重要基础,人工识别效率低,传统机器视觉检测要求高、场景单一。本文提出一种基于深度学习机器视觉的机械零件识别方法,通过加入PointRend模块提升原始Mask R-CNN实例分割模型的检测精度;针对相似度高零件设计类别细分方法,通过尺寸估算与特征匹配,较好地解决由于数据增强图像缩放造成的尺寸特征丢失问题。采集25种不同零件进行识别实验,结果表明:本文方法可有效提升机械零件的识别准确率,算法对相似零件识别准确率达100%,较原始Mask R-CNN方法提升11.51%。并且本文方法可推广到其它具有相似特征目标的识别任务中。

    Abstract:

    Part recognition is an important basis for the assembly and packing of mechanical components. The efficiency of manual recognition is low. The traditional machine vision inspection requires high and the scene is single. This paper proposes a machine part recognition method based on deep learning machine vision. The detection accuracy of the original Mask R-CNN instance segmentation model is improved by adding the PointRend module; the category subdivision method is designed for parts with high similarity, through size estimation and feature matching, It can better solve the problem of size feature loss caused by data-enhanced image scaling. Collecting 25 different parts for recognition experiments, the results show that the method in this paper can effectively improve the recognition accuracy of mechanical parts, and the algorithm can recognize similar parts with an accuracy of 100%, which is 11.51% higher than the original Mask R-CNN method. And the method in this paper can be extended to other recognition tasks with similar features.

    参考文献
    相似文献
    引证文献
引用本文

臧春华,周介祺,刘桂雄.基于Mask R-CNN实例分割的机械零件识别方法研究[J].电子测量技术,2021,44(22):32-36

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-04
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知