基于频谱位移模块的环境声音识别方法
DOI:
CSTR:
作者:
作者单位:

1.中北大学 信息与通信工程学院 太原 030051 2.中北大学 省部共建动态测试技术国家重点实验室 太原 030051

作者简介:

通讯作者:

中图分类号:

TN912.34

基金项目:

国家自然科学基金(62101512); 山西省青年科学基金(20210302124031)项目资助


Environmental Sound Recognition method Based on Spectrum Shift module
Author:
Affiliation:

1 School of Information and Communication Engineering, North University of China, Taiyuan 030051, China; 2 State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对卷积操作只能提取局部频谱信息,不能有效地挖掘频谱之间相关信息的问题,提出了一种基于频谱位移模块的神经网络。该网络采用密集卷积神经网络的架构,并在支路上使用频谱位移模块实现频谱信息之间的交互。利用这种频谱移位取代了频谱间的下采样操作,实现了频谱的全局化特征提取,同时避免了下采样过程中信息的丢失,进一步地提高了频谱特征图质量。并在公开的数据集ESC10和ESC50上验证频谱位移密集模块,在两种数据集的分类准确度分别达到了96.00%和88.75%,与原有的网络相比准确度分别提升了2.1%和2.25%。实验结果表明,和现有的其他卷积神经网络方法相比,所提出的网络能够更好有效地挖掘全局时频信息,具有更高的识别准确率。

    Abstract:

    Convolutional operation only extracted local time-frequency information, and cannot effectively mine the relevant information between spectra. In order to solve this problem, a spectrum shift densenet was proposed. The module adopted structure of dense convolutional module, and the spectrum shift module was used to realize the information interaction between the spectra. It replaced the down-sampling operation between spectra and extracted the global feature from the spectrum. Meanwhile, it avoided the loss of information in the down-sampling process and further improved the quality of the spectrum feature maps. The proposed method was verified on two widely used dataset ESC10 and ESC50 respectively. The classification accuracy of ESC10 and ESC50 datasets is 96.00% and 88.75% respectively. Compared with the existing networks,the accuracy is improved by 2.1% and 2.25%. Comparde with convolutional neural networks based other methods, the proposed module can effectively mine more time-frequency information and has higher accuracy.

    参考文献
    相似文献
    引证文献
引用本文

李传坤,郭锦铭,李剑,孙袖山.基于频谱位移模块的环境声音识别方法[J].电子测量技术,2022,45(5):62-67

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-30
  • 出版日期:
文章二维码