基于新型灰狼优化算法的无人机航迹规划
DOI:
CSTR:
作者:
作者单位:

南昌航空大学信息工程学院 南昌 330063

作者简介:

通讯作者:

中图分类号:

TP301.6

基金项目:

南昌航空大学研究生创新专项资金(YC2020-045)


UAV track planning based on new gray wolf optimization algorithm
Author:
Affiliation:

School of Information Engineering, Nanchang Hangkong University, Nanchang 330063, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决灰狼优化算法存在寻优性能差、收敛性差等问题,提出了一种新型灰狼优化算法。该算法在初始化部分使用反向学习策略生成了有序的个体,有效改善了算法的收敛速度;设计新型的非线性收敛因子和优化个体位置更新策略来协调算法的搜索能力,降低陷入局部最优的概率;引进精英选择保留策略,促使种群进化加速,提高算法收敛速度。基本函数测试和航迹规划仿真实验两者的结果表明新型灰狼优化算法具有较强的收敛性和寻优能力,并且该算法规划航迹所花费的平均航迹代价值比灰狼优化算法少19.9%。

    Abstract:

    For the sake of settle the disputes of algorithm poor optimization performance and slow training speed of gray wolf optimization algorithm, a new gray wolf optimization algorithm is proposed. In the initialization part of the algorithm, the reverse learning strategy is used to generate ordered gray wolf individuals, which validly ameliorates the convergence speed of the algorithm. The search ability of the algorithm is coordinated by designing a new nonlinear convergence factor and optimizing the individual location update strategy to reduce the probability of falling into local optimization. The elite selection retention strategy and tournament selection strategy are introduced to accelerate the population evolution and improve the convergence speed of the algorithm. The basic function test results and track planning simulation experiment verify that the new gray wolf optimization algorithm has strong astringency and high optimization accuracy, and the average track generation value spent by the algorithm is 19.9% less than that of gray wolf optimization algorithm.

    参考文献
    相似文献
    引证文献
引用本文

许乐,赵文龙.基于新型灰狼优化算法的无人机航迹规划[J].电子测量技术,2022,45(5):55-61

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-30
  • 出版日期:
文章二维码