基于DE-GWO算法的光伏系统MPPT仿真研究
DOI:
CSTR:
作者:
作者单位:

三峡大学电气与新能源学院,湖北省宜昌市 443002

作者简介:

通讯作者:

中图分类号:

TN957.51

基金项目:


MPPT simulation of photovoltaic system based on DE-GWO algorithm
Author:
Affiliation:

College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光伏系统受部分遮影作用,使其P-V特性曲线呈现多峰特性,导致传统最大功率点跟踪算法的跟踪效率降低。为此,本文提出含双层结构的最大功率点跟踪算法,将差分进化算法和灰狼优化算法分别置于附属层和主层,运用更替和反哺方式促使两组算法协同搜索使光伏系统输出功率最大化的占空比。首先,将占空比拟物为各算法的个体和灰狼;然后,采用差分进化算法快速搜索多组群体,将各组群体内最佳占空比更替为主层狼群的位置;最后,应用灰狼优化算法对狼群的位置寻优,并将α狼反哺回附属层,指导附属层群体更新。在Matlab2017a/Simulink环境下,应用本文算法对不同遮影程度的四组案例进行仿真,结果表明,本文算法在四组案例中跟踪效率分别为:99.63%、99.91%、99.41%和99.95%,均高于其余三类算法,可较好提升光伏系统发电量。

    Abstract:

    The P-V curve of photovoltaic system is multimodal due to the effect of partial shading. This reduces the tracking efficiency of the traditional maximum power point tracking algorithm. To handle this effect, this paper proposes a two-layered maximum power point tracking algorithm. The differential evolution algorithm is placed in the slave layer, whereas the gray wolf optimization algorithm is placed in the master layer. In order to search the optimal duty cycle that maximizes the power output of photovoltaic system, the methods of replacement and feedback are employed to strengthen the cooperation between two algorithms. Firstly, the duty cycle is considered as the individual and the gray wolf of each algorithm, respectively. Then, differential evolution algorithm is used to search multiple groups of individuals rapidly, and the positions of the wolves in master layer are replaced by the best duty cycle in each group. Finally, the grey wolf optimization algorithm is employed to optimize the positions of wolves, and the α wolf is feed back to the slave layer. This can guide the update of individuals in the slave layer. With the platform of Matlab2017a/Simulink, the proposed algorithm is applied to simulate four cases under different magnitudes of shading. The results indicate that the efficiencies of proposed algorithm are 99.63%, 99.91%, 99.41%, and 99.95% in four cases, respectively. All these efficiencies are above those of other three existing algorithms. The energy production of photovoltaic system can be well improved by the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

杨永康,缪书唯.基于DE-GWO算法的光伏系统MPPT仿真研究[J].电子测量技术,2022,45(7):75-81

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-14
  • 出版日期:
文章二维码