矿用输送带纵向撕裂视听融合检测方法
DOI:
CSTR:
作者:
作者单位:

太原理工大学 新型传感器与智能控制教育部重点实验室,山西 太原 030024

作者简介:

通讯作者:

中图分类号:

TP3

基金项目:

国家自然科学基金资助项目(NSFC-山西煤基低碳联合基金项目U1810121))、 2020年中央引导地方科技发展资金项目(YDZX20201400001796)资助。


Longitudinal Tear Detection Method of Conveyor Belt for Mine Based on Audio-visual Fusion
Author:
Affiliation:

Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    输送带撕裂检测是煤矿安全生产中非常重要的部分。本文提出了一种新的输送带纵向撕裂检测方法—视听融合检测方法。视听融合方法使用可见光CCD和麦克风阵列采集输送带在不同运行状态下的图像和声音。通过对采集到的图像和声音进行处理和分析,分别提取出正常、撕裂和划伤的图像和声音特征。然后利用机器学习算法对提取的图像和声音特征进行融合和分类。实验结果表明:视听融合检测方法对输送带纵向撕裂的准确率为96.23%,对于输送带划伤的准确率为93.66%,与现有方法相比,该方法克服了传统机器视觉检测条件的局限性,对于输送带撕裂检测更加准确可靠。

    Abstract:

    Conveyor belt tear detection is a very important part of coal mine safety production. In this paper, a new method of detecting conveyor belt damage named audio-visual fusion (AVF)detection method is proposed. The method uses both a visible light CCD and a microphone array to collect images and sounds of the conveyor belt in different running states. By processing and analyzing the collected images and sounds, the image, and sound features of normal, tear and scratch can be extracted respectively. Then the extracted features of images and sounds are fused and classified by machine learning algorithm. The results show that the accuracy of AVF method for conveyor belt scratch is 93.66%, and the accuracy of longitudinal tear is higher than 96.23%. Compared with existing methods AVF method overcomes the limitation of visual detection condition, and is more accurate and reliable for conveyor belt tear detection.

    参考文献
    相似文献
    引证文献
引用本文

高瑜璋,乔铁柱,车剑.矿用输送带纵向撕裂视听融合检测方法[J].电子测量技术,2022,45(7):131-136

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-14
  • 出版日期:
文章二维码