改进DBSCAN聚类的信道状态信息定位算法
DOI:
CSTR:
作者:
作者单位:

1. 安徽理工大学空间信息与测绘工程学院 淮南 232001; 2. 安徽理工大学矿山采动灾害空天地协同监测与预警安徽普通高校重点实验室 淮南 232001; 3.安徽理工大学矿区环境与灾害协同监测煤炭行业工程研究中心 淮南 232001

作者简介:

通讯作者:

中图分类号:

TN92

基金项目:

国家自然科学基金资助项目(41474026); 安徽省重点研究与开发计划(202104a07020014); 安徽省科技重大科技专项(202103a05020026)


Channel State Information localization based on improved DBSCAN clustering algorithm
Author:
Affiliation:

1. School of Geomatics, Anhui University of Science and Technology, Huainan 232001, China; 2. Key Laboratory of Aviation-aerospace-ground Cooperative Monitoring and Early Warning of Coal Mining-induced Disasters of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan 232001, China; 3. Coal Industry Engineering Research Center of Mining Area Environmental And Disaster Cooperative Monitoring, Anhui University of Science and Technology, Huainan 232001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,利用WiFi信道状态信息的无线信号在室内定位、跌倒检测、身份识别等场景都发挥了重要应用价值。然而,复杂环境下多径效应的影响使得指纹定位的精度仍有待提高。针对这一问题,本文在降噪时提出了一种基于密度的自适应聚类算法,并在定位阶段联合动态加权K邻近算法进行匹配。首先,使用Hampel算法去除幅值信息的离群点;然后,将改进的DBSCAN算法自动调节参数对数据聚类;最后,用动态加权K邻近算法进行指纹库与实时定位点的匹配。仿真实验表明:在约5×10m2的定位区域内,DBSCAN算法的平均定位精度达到1.579m,其中定位精度在2m内的占比相对于传统指纹法提高了42.9%。

    Abstract:

    In recent years, wireless signals using WiFi Channel State Information have played important roles in scenarios such as indoor positioning, fall detection, and identification. However, the impact of multipath effects in complex environments makes the accuracy of fingerprint positioning to be improved. To solve this problem, this paper proposes an improved Density-Based Spatial Clustering of Applications with Noise during the process of noise reduction combined with Enhanced weighted K-nearest neighbor algorithm in the online stage. First, the Hampel algorithm is used to remove outliers of the amplitude information; then, the improved DBSCAN algorithm automatically adjusts the parameter to cluster data; finally, the Enhanced weighted K-nearest neighbor algorithm is used to match the real-time positioning points from the fingerprint database. The experimental results show that the average positioning accuracy of the DBSCAN algorithm reaches 1.579m in a positioning area of about 5×10m2, and the percentage of error within 2m is increased by 42.9% compared to the traditional fingerprint method.

    参考文献
    相似文献
    引证文献
引用本文

刘 宇,余学祥,谢世成,刘 双,朱 平.改进DBSCAN聚类的信道状态信息定位算法[J].电子测量技术,2022,45(7):169-173

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-14
  • 出版日期:
文章二维码