基于贝叶斯优化XGBoost的无创血压预测方法
DOI:
CSTR:
作者:
作者单位:

南京邮电大学 自动化学院、人工智能学院 南京 210023

作者简介:

通讯作者:

中图分类号:

TP274

基金项目:

国家自然科学基金(61801239)


Non-invasive blood pressure detection method based on Bayesian optimization XGBoost
Author:
Affiliation:

School of Automation & School of Artificial Intelligence,Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为降低个体特征差异对无创血压预测模型精度的影响,提高预测准确率,提出建立贝叶斯优化(BO)XGBoost的无创血压预测方法。该方法首先通过脉搏波传导时间(PTT)和身体质量指数(BMI)建立多元线性模型获得初步血压预测值;进一步结合人体特征参数作为XGBoost血压预测模型的输入;再运用贝叶斯优化对XGBoost超参数自动寻优,最终建立BO-XGBoost模型进行血压预测,并与其他方法对比。实验结果表明,BO-XGBoost血压预测模型舒张压和收缩压测量值的平均误差满足美国医疗仪器促进协会(AAMI)制定的小于5mmHg的标准,与水银血压计具有更好的一致性。

    Abstract:

    In order to reduce the impact of individual characteristic differences on the accuracy of the non-invasive blood pressure prediction model and improve the prediction accuracy, a Bayesian optimization (BO) XGBoost non-invasive blood pressure prediction method is proposed. Firstly, the multivariate linear model is established to obtain preliminary blood pressure prediction values based on pulse transit time (PTT) and body mass index (BMI). Then combine human characteristic parameters as the input of XGBoost blood pressure prediction model. Then use Bayesian optimization to automatically optimize XGBoost hyperparameters. Finally, the BO-XGBoost model is used to predict the blood pressure and compare with other methods. The experimental results show that the average absolute error of diastolic and systolic blood pressure based on the BO-XGBoost blood pressure prediction model meets the standard of less than 5mmHg formulated by AAMI (American Medical Instrument Promotion Association), which is better consistent with the method of mercury sphygmomanometer.

    参考文献
    相似文献
    引证文献
引用本文

孙斌,储芳芳,陈小惠.基于贝叶斯优化XGBoost的无创血压预测方法[J].电子测量技术,2022,45(7):68-74

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-14
  • 出版日期:
文章二维码