融合改进灰狼优化算法和人工势场法的路径规划
DOI:
CSTR:
作者:
作者单位:

昆明理工大学 信息工程与自动化学院 昆明 650000

作者简介:

通讯作者:

中图分类号:

TP242

基金项目:

云南省重点研发计划项目“工业机器人关键技术研究及其在智能制造中的应用示范”课题(202002AC080001)


Path planning combined with improved grey wolf optimization algorithm and artificial potential field method
Author:
Affiliation:

School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统灰狼优化算法(Grey Wolf Optimization, GWO)规划的路径全局较优,但存在求解效率低和易陷入局部最优的缺陷,而人工势场法(Artificial Potential Field, APF)规划的路径虽然平滑,但有规划路径存在震荡和目标不可达的问题。针对两种算法的不同缺陷,提出一种兼顾全局和局部特性的算法-灰狼势场算法(Grey Wolf Potential Field Algorithm, GWPFA)。首先,提出一种建立特征栅格地图的新方法;其次,通过设置灰狼个体的相对距离d和调节因子λ,将参数a改进成非线性衰减;再次,提出节点优先级的概念,根据此概念重新对路径规划问题进行建模;最后,将改进GWO算法全局路径规划的节点作为APF算法的临时目标点,并改进临时目标点为临时边界,再进行局部路径规划。仿真结果表明,在全局静态环境下,GWPAF算法的运行时间、最优路径长度及转弯角度相比于GWO算法分别优化了224.5s、16.3m及38.9°;在局部动态环境下,GWPFA算法在保证路径最优性的同时可以成功避障。仿真结果验证了GWPFA算法的有效性、可行性及优越性。

    Abstract:

    The path planned by the traditional Grey Wolf Optimization(GWO) algorithm better in the world, but it had the defects of low solution efficiency and easy to fall into the local optimum. Although the path planned by the Artificial Potential Field(APF) algorithm is smooth, there are turbulences and fluctuations in the planned path. The defect of unreachable target. Aiming at the different shortcomings of the two algorithms, the two algorithms are improved respectively, and the two algorithms are merged, and an algorithm that takes into account the global and local characteristics is proposed—Grey Wolf Potential Field Algorithm (GWPFA). First, a new method for establishing feature grid maps is proposed to speed up the determination of feature grids and the establishment of feature grid maps; secondly, by setting the relative distance d of the grey wolf individual and the adjustment factor λ, the parameter a is improved to non-Linear attenuation; again, the concept of node priority is proposed, and the path planning problem is modeled based on this concept; finally, the node that improves the global path planning of the GWO algorithm is used as the temporary target point of the APF algorithm, and the temporary target point is improved as temporary Boundaries, and then local path planning. The simulation results show that in the global static environment, the running time, optimal path length, and turning angle of the GWPAF algorithm are optimized by 224.5s、16.3m and 38.9°C respectively compared with the GWO algorithm; in a local dynamic environment, the GWPFA algorithm is guaranteed The path is optimal while avoiding obstacles successfully. The simulation results verify the effectiveness、feasibility and superiority of the GWPFA algorithm.

    参考文献
    相似文献
    引证文献
引用本文

音凌一,向凤红.融合改进灰狼优化算法和人工势场法的路径规划[J].电子测量技术,2022,45(3):43-53

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-14
  • 出版日期:
文章二维码