基于改进麻雀搜索算法的微网容量优化配置
DOI:
CSTR:
作者:
作者单位:

河北工业大学省部共建电工装备可靠性与智能化国家重点实验室 天津 300130

作者简介:

通讯作者:

中图分类号:

TM71

基金项目:

天津市自然科学基金重点项目(19JCZDJC32100)


Microgrid capacity optimization based on improved sparrow search algorithm
Author:
Affiliation:

State Key Laboratory of Reliability and Intellectualization of electrical equipment jointly built by province and Ministry, Hebei University of Technology, Tianjin 300130, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为得到微电网中各微电源的最佳容量配比,满足负荷的出力需求,本文针对含风光柴储的并网型微电网,以综合运行成本最低为目标函数,以分布式电源出力及污染物排放量为约束条件,建立容量优化配置模型。采用折射反向学习机制、差分变异交叉选择策略及动态步长因子改进标准麻雀搜索算法对模型进行求解,并与鲸鱼优化算法、差分算法、灰狼算法、麻雀搜索算法进行对比。选取宁夏地区两个典型日进行算例分析,所求成本较其他4种算法分别降低3.05%、4.12%、8.46%及1.13%。仿真结果表明所提模型具有合理性,且改进的SSA具有良好的寻优能力。

    Abstract:

    In order to obtain the optimal capacity ratio of the micro power sources in the microgrid, and satisfy the output demand of the load, this paper establishes a capacity optimization configuration model for the grid-connected microgrid with wind, solar, diesel and battery, and takes the lowest comprehensive operating cost as the objective function, and the distributed power output and pollutant emissions as constraints. Using refracted opposition-based learning strategy, differential mutation, cross selection strategies and the dynamic step factor to improve the standard sparrow search algorithm to solve the model, and comparing with whale optimization algorithm, differential evolution, gray wolf optimizer, and sparrow search algorithm. Two typical days in Ningxia are selected for analysising of calculation examples, the required cost is 3.05%, 4.12%, 8.46% and 1.13% lower than the other four algorithms respectively. The simulation results show that the proposed model is reasonable, and the improved sparrow search algorithm has better optimization ability.

    参考文献
    相似文献
    引证文献
引用本文

马纪梅,张欣彤,张政林,谢波.基于改进麻雀搜索算法的微网容量优化配置[J].电子测量技术,2022,45(8):76-82

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-10
  • 出版日期:
文章二维码