基于改进SOLO的列车主动避障视觉算法研究
DOI:
CSTR:
作者:
作者单位:

数据与智能技术中心,株洲中车时代电气股份有限公司,湖南省株洲市,412001

作者简介:

通讯作者:

中图分类号:

TP2

基金项目:


Research on Vision Algorithm of the Train's Advanced Driver Assistance System Base on Improved SOLO
Author:
Affiliation:

Data and Intelligence R&D Center , Zhuzhou CRRC Times Electric Co.,Ltd., Zhuzhou,Hunan, 412001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着我国经济的高速全面发展,人民生活水平的日益提高,我国对于交通运输方面的需求越来越大。为了满足列车安全运行的需求,本文提出铁路场景下基于单阶段实例分割的列车主动避障视觉算法,针对铁路场景中侵线情况下检测物体多重叠的特点对算法模型进行了优化,改进主干网络和多尺度融合方法提高了模型的精度,利用TensorRT半精度加速和CUDA重构对模型进行了加速,并对本文方法和其他方法进行性能评价与对比试验。最终,本文方法在嵌入式平台Xavier上实现了71.2MAP和108ms的速度,实现了车载部署下列车前方环境的高效高精度检测。

    Abstract:

    With the rapid and comprehensive development of China's economy and the improvement of people's living standards, China’s demand for transportation is increasing. In order to meet the higher requirements of locomotive operation safety, a visual algorithm of the advanced driver assistance system of trains based on single-stage instance segmentation in railway scene is proposed. The algorithm model is optimized for detecting the characteristics of multiple overlaps of objects in railway scenes. The accuracy of the model is improved by improving the Backbone network and multi-scale fusion method. The model is accelerated by TensorRT semi-precision acceleration and CUDA code refactoring. The performance evaluation and comparative test of this method and other methods are carried out. Finally, this method achieves 71.2MAP and 108ms on the embedded platform Xavier. High-precision detection of the surrounding environment of the train under vehicle deployment is realized.

    参考文献
    相似文献
    引证文献
引用本文

姚巍巍,田野,李晨.基于改进SOLO的列车主动避障视觉算法研究[J].电子测量技术,2022,45(9):133-139

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-08
  • 出版日期:
文章二维码