融合语义特征网络的孪生网络目标跟踪算法
DOI:
CSTR:
作者:
作者单位:

1.昆明理工大学 信息工程与自动化学院 昆明 650500;2. 昆明理工大学 云南省人工智能重点实验室 昆明 650500;2. 昆明理工大学 云南省计算机技术应用重点实验室 昆明 650500

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:


Siamese Network Target Tracking Algorithm Fused with Semantic Feature Network
Author:
Affiliation:

1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China; 2. Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China; 3. Yunnan Key Laboratory of Computer Technology Application, Kunming University of Science and Technology, Kunming 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基于孪生网络的反向传播滤波器跟踪算法CFNet在遭遇相似物干扰或背景信息与前景目标相似的情况下容易导致模型漂移跟踪效果下降的情况,提出一种融合语义特征网络的孪生网络目标跟踪算法。在图像处理中,通过深度卷积神经网络的深层网络可以提取到丰富的语义信息,这些语义信息在目标发生相似物干扰、运动模糊、目标严重变形等情景时,对目标进行辨识是非常有用的。提出的算法在CFNet的原有网络结构上,增加一个语义特征网络,与CFNet的外观特征网络形成互补,两个特征网络的训练是独立的以保持两种特征的异质性,在得到各自的响应图后,通过计算这两个响应图的置信度来进行融合,提高了算法的判别能力。实验表明,与其它常用的5个算法相比,本文算法达到了最优,能够有效的跟踪目标。

    Abstract:

    Aiming at the situation that CFNet, the back propagation filter tracking algorithm based on the siamese network, is likely to cause the model drift tracking effect to decrease when it encounters the interference of similar objects or the background information is similar to the foreground target, a siamese network target tracking algorithm fused with semantic feature network is proposed. In image processing, through the deep network of deep convolutional neural network, rich semantic information can be extracted. These semantic information can cause similar interference, motion blur, severe target deformation, etc. In situations, it is very useful to identify the target. In the proposed algorithm, a semantic feature network is added to the original network structure of CFNet, which is complementary to the appearance feature network of CFNet. The training of the two feature networks is independent to maintain the heterogeneity of the two features and obtain their respective response maps. Later, the fusion is performed by calculating the confidence of the two response graphs, which improves the discriminative ability of algorithm. Tests show that, the algorithm in this paper achieves the optimum and can track the target effectively compared with other 5 commonly used algorithms.

    参考文献
    相似文献
    引证文献
引用本文

付谱平,叶 俊.融合语义特征网络的孪生网络目标跟踪算法[J].电子测量技术,2022,45(8):136-142

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-10
  • 出版日期:
文章二维码