基于UNet自适应特征融合的语音增强
DOI:
CSTR:
作者:
作者单位:

太原理工大学信息与计算机学院 山西 榆次 030600

作者简介:

通讯作者:

中图分类号:

TN912.35

基金项目:

山西省自然科学基金项目(201701D121058);山西省回国留学科研项目(2020-042)资助


Speech enhancement based on UNet adaptive feature fusion
Author:
Affiliation:

College of Information and Computer science, Taiyuan University of Technology, Yuci 030600, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的语音增强网络对未知噪声增强效果不理想的问题,本文从语谱图增强,网络结构,特征融合机制三方面提出改进方法。首先为了提取语谱图深层特征信息,使用VGG19结构来代替UNet结构中编码器部分,同时在解码器部分加入残差网络以加深网络深度,防止训练退化;其次,为了更好地结合语谱图中特征信息,在UNet结构跳跃连接部分加入自适应特征融合机制来融合深浅层特征。此外,为增强说话人信息,通过直方图均衡算法对语谱图进行特征优化,得到直方图均衡化增强后的语谱图。在不同的噪声环境中,本文所提方法在质量和可理解性度量方面评分都优于其他增强方法。

    Abstract:

    Aiming at the problem that the traditional speech enhancement network is not ideal for unknown noise enhancement, this paper proposes an improved method from the aspects of spectral enhancement, network structure and feature fusion mechanism. Firstly, in order to extract the deep feature information of the spectrum, VGG19 structure was used to replace the encoder part of UNet structure, and residual network was added to the decoder part to deepen the network depth and prevent the training degradation. Secondly, in order to better combine the feature information in the spectrogram, an adaptive feature fusion mechanism is added to the jump connection part of THE UNet structure to fuse the deep and shallow features. In addition, in order to enhance the speaker information, the histogram equalization algorithm is used to optimize the feature of the spectrogram, and the histogram equalization enhancement spectrogram is obtained. In different noise environments, the proposed method outperforms other enhancement methods in terms of quality and comprehensibility.

    参考文献
    相似文献
    引证文献
引用本文

任健,李鸿燕,张昱,邢璐.基于UNet自适应特征融合的语音增强[J].电子测量技术,2022,45(9):76-81

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-08
  • 出版日期:
文章二维码