基于改进MSR的锂电池X射线图像增强算法
DOI:
CSTR:
作者:
作者单位:

武汉工程大学智能机器人湖北省重点实验室 武汉 430000

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


X-ray image enhancement algorithm of lithium battery based on improved MSR
Author:
Affiliation:

Hubei Provincial Key Laboratory of Intelligent Robots,Wuhan Institute of Technology, Wuhan 430000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对锂电池X射线图像存在清晰度低、对比度差、图像电极轮廓模糊不清晰等问题,提出一种基于改进多尺度Retinex的锂电池X射线图像增强算法。首先,在传统多尺度Retinex算法中,使用双边滤波估计照度分量,同时利用基于平均对数亮度值进行全局自适应的图像动态范围压缩。然后使用改进的MSR算法提取图像的反射分量,利用sobel算子获取反射分量的纵向梯度,再与反射分量进行梯度信息融合,增强图像细节信息,再对融合图像使用CLAHE算法进行对比度增强,最后再使用双边滤波去噪声,得到最终增强图像。在自主构建的数据集上进行了实验研究,实验结果表明提出的方法显著提高锂电池X射线图像的清晰度和对比度,图像阴极线边缘轮廓有明显增强,在突出锂电池X射线图像边缘细节信息和增强图像对比度上,都要明显优于传统多尺度Retinex算法。

    Abstract:

    Aiming at the problems of low definition, poor contrast, and blurred electrode contours in lithium battery X-ray images, an X-ray image enhancement algorithm for lithium batteries based on improved multi-scale Retinex was proposed. First, in the traditional multi-scale Retinex algorithm,bilateral filtering is used to estimate the luminance component, while image dynamic range compression is performed globally adaptively based on the mean logarithmic luminance value. Then use the improved MSR algorithm to extract the reflection component of the image, use the sobel operator to obtain the longitudinal gradient of the reflection component, and then fuse the gradient information with the reflection component to enhance the image details, and then use the CLAHE algorithm to enhance the contrast of the fused image, and finally use Bilateral filtering is used to remove noise to obtain the final enhanced image. The experiments are carried out on the self-constructed data set. The experimental results show that the proposed method can significantly improve the clarity and contrast of X-ray images of lithium batteries, and the edge contours of the cathode lines in the images are significantly enhanced. It is significantly better than the traditional multi-scale Retinex algorithm in highlighting the edge details of lithium battery X-ray images and enhancing image contrast.

    参考文献
    相似文献
    引证文献
引用本文

钱玉洋,魏巍,陈 灯.基于改进MSR的锂电池X射线图像增强算法[J].电子测量技术,2022,45(9):113-120

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-08
  • 出版日期:
文章二维码