基于特征融合的风机叶片表面缺陷检测模型
DOI:
CSTR:
作者:
作者单位:

1.昆明理工大学信息工程与自动化学院,昆明 650000;2.云南龙源风力发电有限公司,曲靖 655000

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

山地输电塔线的光纤光栅在线监测与多参量融合研究(61962031)


Defect detection model of wind turbine blade based on feature fusion
Author:
Affiliation:

1.College of information engineering and automation, Kunming University of science and technology Kunming 650000, China; 2. Yunnan Longyuan Wind Power Company Limited, Qujing 655000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对风机叶片表面缺陷检测识别率低、且易受光照影响的特点。提出一种基于卷积神经网络特征融合局部二值模式特征及核极限学习机的风机叶片表面缺陷检测方法。利用引入注意力机制的卷积神经网络提取图像深层次信息,然后提取描述图像浅层纹理信息的局部二值模式特征,采用主成分分析方法降低局部二值模式特征维度;将两种从不同层面描述图像的互补特征串行融合。用改进的麻雀搜索算法优化核极限学习机参数,利用融合的特征训练模型,得到最优模型进行缺陷识别。通过实验,在自建数据集训练后的分类准确率达到了97.5%,kappa系数达到95.1。相比利用单一特征检测,分类准确率有明显的提高。经风电场实际验证,本模型的平均分类准确率为96.3%,Kappa系数为94.5,漏报率明显降低。

    Abstract:

    In order to solve the problem of the wind turbine blade surface defect defection which has low detection recognition rate and can be easily affected by the light, this paper puts forward a wind turbine blade surface defect detection method based on convolutional neural network which combines local binary patterns with core extreme learning machine. The convolutional neural network introducing attention mechanism is used to extract deep information of images. Then, local binary patterns characteristics which can describe shallow texture information of images are also exacted. Besides, the principal component analysis can reduce local binary patterns characteristic dimension. Serial combination is then done to these two complementary characteristics which can describe images from different levels and the improved sparrow search algorithm is used to optimize Kernel extreme learning machine parameters. Besides, the syncretic feature training model is used to obtain the optimal model for defect recognition. The experiment shows that the classification accuracy rate after the training of self-built data sets can reach 97.5% and that the kappa coefficient can reach 95.1. Compared with single feature detection, the classification accuracy is significantly improved. The actual verification of the wind farm shows that the average classification accuracy of the model is 96.3%, the kappa coefficient is 94.5, and the missing rate is significantly reduced.

    参考文献
    相似文献
    引证文献
引用本文

汤占军,孙栋钦,李英娜,陆鹏.基于特征融合的风机叶片表面缺陷检测模型[J].电子测量技术,2022,45(11):161-166

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-25
  • 出版日期:
文章二维码