基于空时域信息融合的水面垃圾显著性检测
DOI:
CSTR:
作者:
作者单位:

1.深圳市朗驰欣创科技股份有限公司, 广东 深圳 518000; 2.西南科技大学信息工程学院, 四川 绵阳 621010

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Detection of surface garbage significance based on spatial Temporal information fusion
Author:
Affiliation:

1. Shenzhen Langchi Xinchuang Technology Co., LTD., Shenzhen 518000, China; 2. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有目标检测算法在水面垃圾检测中,由于图像存在光照、水纹、倒影等干扰导致的算法鲁棒性不足的问题,提出了一种融合空域先验信息和频域相位谱的水面垃圾显著性检测方法。在空域融合基于背景先验、局部对比度先验和暗部区域先验信息生成的最小障碍距离图、对比度图和背景图,得到初始的水面垃圾显著图;在频域对图像相位谱进行低秩分解再加权融合,得到冗余较少的显著目标。实验证明,该方法准确率可达96.4%,可有效抑制波纹、光照、倒影的干扰。

    Abstract:

    Aiming at the problem of insufficient robustness of existing target detection algorithms in surface garbage detection due to the interference of illumination, water ripple and reflection in images, a surface garbage significance detection method combining spatial prior information and frequency-domain phase spectrum was proposed. Based on background prior, local contrast prior and dark region prior information, the minimum obstacle distance map, contrast map and background map were fused in spatial domain to obtain the initial saliency map of surface garbage. In the frequency domain, the phase spectrum of the image is reweighted by low rank decomposition to obtain a significant target with less redundancy. Experimental results show that the accuracy of this method can reach 96.4%, and the interference of ripple, light and reflection can be effectively suppressed.

    参考文献
    相似文献
    引证文献
引用本文

谷湘煜,祝礼佳,柳胡南,李桂林,布文萍,刘桂华.基于空时域信息融合的水面垃圾显著性检测[J].电子测量技术,2022,45(11):154-160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-25
  • 出版日期:
文章二维码