面向康复训练的多通道mRMR-PSO肌电特征选择算法
DOI:
CSTR:
作者:
作者单位:

南昌大学先进制造学院机械工程系,南昌330031

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Multi-channel mRMR-PSO sEMG feature selection algorithm for rehabilitation training
Author:
Affiliation:

Advanced Manufacturing school, Nanchang University, Nanchang 330031,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    表面肌电信号的产生超前于肢体运动的发生,具有预测肢体运动的能力,常常辅助患者的康复训练。针对单通道表面肌电信号难以有效进行关节角度预测的问题,本文提出了一种基于多通道肌电特征采集下的最大相关最小冗余结合粒子群优化的特征选择算法。通过与采用mRMR算法、主成分分析法对关节角度预测精度进行实验对比,验证mRMR-PSO算法的性能。实验结果表明,基于多通道的mRMR-PSO特征选择算法相比mRMR和PCA算法在关节角度预测精度分别提高了32.6%和14.9%,从而验证了算法的有效性,并将该算法应用于实际场景。

    Abstract:

    The generation of Surface Electromyography is ahead of the occurrence of body movement and has the ability to predict body movement, which often assists patients in rehabilitation training. To solve the problem that single channel sEMG signal is difficult to predict people' joint angles effectively, this paper proposed a maximum Relevance minimum Redundancy based on multi-channel EMG feature acquisition and Particle Swarm Optimization feature selection algorithm. The performance of mRMR-PSO algorithm was verified by comparing with that of mRMR algorithm and Principal Component Analysis algorithm for joint Angle prediction accuracy. Experimental results show that the joint angle prediction accuracy of mRMR-PSO based on multi-channel feature selection algorithm is 32.6% and 14.9% higher than that of mRMR and PCA, respectively, which verifies the effectiveness of the algorithm,and the algorithm is applied to actual scenarios.

    参考文献
    相似文献
    引证文献
引用本文

胡瑢华,姚 圣,曾 成.面向康复训练的多通道mRMR-PSO肌电特征选择算法[J].电子测量技术,2022,45(11):72-77

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-25
  • 出版日期:
文章二维码