基于深度神经网络的液体视觉识别研究
DOI:
CSTR:
作者:
作者单位:

1.广东工业大学 机电工程学院 广州 510006;2.佛山沧科智能科技有限公司 佛山 528225

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金项目(61705045),佛山广工大研究院创新创业人才团队计划项目 (20191108)项目资助


Research on liquid vision recognition based on deep neural network
Author:
Affiliation:

1.School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; 2.Foshan Cangke Intelligent Technology Co., LTD, Foshan 528225, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对液体表面特征少,区分度低,机器视觉难以有效识别检测的问题,通过使用两束不同波长的激光光源同时照射液体来提高不同液体之间的区分度,设计了数据集自动采集装置为模型训练提供了大量有效的样本,并构建了基于EfficientNetV2深度神经网络的视觉识别模型,模型引入cosine学习率衰减,调节获得最佳超参数后,形成最优方式实现高效训练,进一步提升了预测精度,结果表明视觉检测系统能够获得100%的测试准确率,成功解决了液体视觉检测中特征少的难题。

    Abstract:

    Aiming at the problem that liquid surface features are few and discrimination is low, which is difficult to be recognized and detected effectively by machine vision, two laser light sources with different wavelengths are used to irradiate liquid at the same time to improve the discrimination between different liquids. An automatic collection device of data set is designed to provide a large number of effective samples for model training and then a visual recognition model based on EfficientNetV2 deep neural network was constructed. After introducing cosine learning rate dacay into the model and regulating super-parameters to the best, the optimal method was formed to realize efficient training, and the prediction accuracy was further improved. The results showed that the visual detection system could obtain 100% prediction accuracy, and successfully solved the problem of few features in liquid visual detection.

    参考文献
    相似文献
    引证文献
引用本文

钟 扬,吴黎明,温腾腾,伍冠楚,王桂棠.基于深度神经网络的液体视觉识别研究[J].电子测量技术,2022,45(11):22-29

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-25
  • 出版日期:
文章二维码