基于深度学习的并联机器人定位检测技术研究
DOI:
CSTR:
作者:
作者单位:

1.中北大学机械工程学院,山西太原 030051;2. 山西省起重机数字化工程技术研究中心,山西太原 030051

作者简介:

通讯作者:

中图分类号:

TP242.2

基金项目:

山西省重点国际科技合作项目(201903D421015)


Research on positioning and detection technology of parallel robot based on deep learning
Author:
Affiliation:

1.North University of China, School of mechanical engineering, Taiyuan Shanxi 030051, China;2.Shanxi Crane Digital Engineering Technology Research Center, Taiyuan Shanxi 030051

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对机器视觉领域中并联机器人存在目标识别模糊,分类效率差以及反应速度过慢的问题,提出了一种基于深度学习的并联机器人定位检测技术。首先对目标识别物进行图像采集,改进图像数据集,将处理前后图像放入训练集提高网络效率,搭建YOLOX目标检测分类识别算法提高并联机器人检测精度;其次改进训练方式,通过预训练与实际训练提高可靠性,改进损失策略;然后建立并联机器人主体基坐标系与相机坐标系,结合手眼标定与相机标定方法,求得目标实际坐标与机器人基坐标系的转换关系;最后在并联机器人实验平台验证目标标定结果,对比主流深度学习算法YOLOv3、YOLOv4、Faster-RCNN得出的并联机构网络定位与实际定位的相对误差,结果表明YOLOX的定位精度误差为3.992-5.061mm之间,平均精确度达到了91%左右。该方法可为并联机器人结合深度学习实现检测定位提供一定参考价值。

    Abstract:

    Aiming at the problems of fuzzy target recognition, poor classification efficiency and slow response speed of parallel robot in the field of machine vision, a positioning and detection technology of parallel robot based on deep learning is proposed. Firstly, put the parallel robot into the image collection set to improve the image recognition accuracy and improve the object recognition efficiency; Secondly, improve the training mode, improve the reliability and loss strategy through pre-training and actual training; Then, the base coordinate system and camera coordinate system of the parallel robot are established. Combined with the hand eye calibration and camera calibration methods, the transformation relationship between the actual coordinates of the target and the base coordinate system of the robot is obtained; Finally, the target calibration results are verified on the parallel robot experimental platform. Compared with the relative error between the network positioning and actual positioning of the parallel mechanism obtained by the mainstream deep learning algorithms YOLOv3, YOLOv4 and Faster-RCNN, the results show that the positioning accuracy error of YOLOX is about 3.992-5.061mm, and the average accuracy is about 91%. This method can provide a certain reference value for the detection and positioning of parallel robot combined with deep learning.

    参考文献
    相似文献
    引证文献
引用本文

张宇廷,王宗彦,范浩东,王曦.基于深度学习的并联机器人定位检测技术研究[J].电子测量技术,2022,45(11):147-153

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-25
  • 出版日期:
文章二维码