基于改进YoloX-s的密贴检查器故障检测方法
DOI:
CSTR:
作者:
作者单位:

南京理工大学自动化学院 南京 210094

作者简介:

通讯作者:

中图分类号:

U216.3

基金项目:


A fault detection method of the closure detectors based on the improved YoloX-s
Author:
Affiliation:

School of Automation,Nanjing University of Science and Technology, Nanjing 210094,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了降低密贴检查器维护和检修中的高运营成本,提高安全保障能力,提出了一种改进YoloX-s的密贴检查器故障检测方法。通过改进YoloX-s中的PANet路径融合网络,进一步地增加了与浅层特征层的融合;此外,增加了CA(Coordinate Attention)注意力机制,将注意力集中在目标区域内,以获取细节信息;选用CIoU损失函数以聚焦目标框与检测框之间的重叠面积、中心点距离和长宽比,提高模型的定位精度。实验结果表明,相较于YoloX-s模型,所提模型有着更好的综合表现,动接点环平均精度为97.73%,静接点片平均精度为98.83%,平均精度均值为98.28%。

    Abstract:

    In order to reduce a high operation cost of maintenance and recondition, as well as improving the security capability, we employed an improved YoloX-s detection method for the fault of closure detectors. By elevating the PANet path fusion network of the proposed model, a fusion with shallow feature layer is further strengthened; In addition, we added the CA(Coordinate Attention) attention mechanism to the model for the more detailed information in the target area. Moreover, the CIoU loss function is selected to enhance a positioning accuracy, which is aimed at the overlapping area, the center point distance and the aspect ratio between a target frame and a detection frame. After various tests, the experimental results showed that the presented model has a better comprehensive performance compared with the existing YoloX-s model. Furthermore, an average accuracy of moving contact reached 97.73%, an average accuracy of static contact reached 98.83%, and an average accuracy reached 98.28%.

    参考文献
    相似文献
    引证文献
引用本文

徐哲玮,刘 昭,包建东,刘英舜.基于改进YoloX-s的密贴检查器故障检测方法[J].电子测量技术,2022,45(12):91-98

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-17
  • 出版日期:
文章二维码