基于相机风格转换的行人再识别
DOI:
CSTR:
作者:
作者单位:

1. 上海大学 通信与信息工程学院 上海 200072;2. 上海大学 智慧城市研究院 上海 200072

作者简介:

通讯作者:

中图分类号:

TP391.41;TP332

基金项目:

安徽省自然科学基金(No: 1908085MF178)、安徽省重点研究和开发计划项目(No. 202104b11020031)、中国博士后基金项目(2020M681264)资助


Camera Style Transfer for Person Re-identification
Author:
Affiliation:

1. School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China; 2. Institute of Smart City, Shanghai University, Shanghai 200072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    不同相机间的风格变化是行人再识别领域的一个重要挑战,为了平滑相机风格差异,丰富行人样本的多样性,本文通过风格转换方法显式学习相机间的不变特征。具体来说,利用循环一致性生成对抗网络为每个行人生成具有其他相机风格的转换图像,并与原始样本一起组成增强数据集进行训练;另外,本文使用注意力机制对特征通道进行重新加权以提取更具判别力的行人外观特征,最后使用多任务损失对再识别网络进行监督训练。实验结果表明,本文方法在公开数据集Market1501和DukeMTMC-reID上的mAP和top-1指标分别达到了86.5%,95.1%以及77.1%,87.2%,优于现有算法。相机风格转换作为一种数据增强方法,有效扩充了数据集并降低了人工标注成本,同时提升了在多摄像机场景下的识别准确性。

    Abstract:

    Style variations among different cameras is an important challenge in the field of person re-identification. To smooth the camera style disparities and enrich the diversity of pedestrian samples, this paper explicitly learns invariant features among cameras through a style transfer approach. Specifically, a cycle consistent adversarial networks (CycleGAN) is used to generate transformed images with other camera styles for each pedestrian, and along with the original samples, form the augmented training set. In addition, this paper uses an attention mechanism to reweight the feature channels to extract more discriminative pedestrian appearance features, and finally, the multi-task loss is used to supervise the training process of the re-identification network. The experimental results show that the mAP and top-1 metrics of the method in this paper achieve 86.5%, 95.1% and 77.1%, 87.2% on the public datasets Market1501 and DukeMTMC-reID, respectively, which are better than the existing algorithms. Camera style transfer as a data augmentation approach effectively expands the dataset and reduces the human labeling cost, while improving the identification accuracy in multi-camera scenarios.

    参考文献
    相似文献
    引证文献
引用本文

邓杰,王旭智,万旺根.基于相机风格转换的行人再识别[J].电子测量技术,2022,45(12):120-126

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-17
  • 出版日期:
文章二维码