参数优选残差网络下的井震联合反演方法
DOI:
CSTR:
作者:
作者单位:

1.长江大学电子信息学院 荆州 434023;2.长江大学计算机科学学院 荆州 434023;3.长江大学西部研究院 克拉玛依市 834000;4.长江大学电工电子国家级实验教学示范中心 荆州 434023;5.油气资源与勘探技术教育部重点实验室 荆州 434023;6.三峡大学计算机与信息学院 宜昌 443002

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

新疆维吾尔自治区自然科学基金项目(2020D01A131);湖北省自然科学基金项目(2021CFB119)


Well-to-seismic joint inversion method based on parameter optimization residual network
Author:
Affiliation:

1. School of Electronic Information, Yangtze University, Jingzhou 434023, China; 2. School of Computer Science, Yangtze University, Jingzhou 434023, China; 3. Western Research Institute of Yangtze University, Xinjiang 834000, China; 4. National Experimental Teaching and Demonstration Center of Electrical engineering and Electronics, Yangtze University, Jingzhou 434023, China; 5. Key Laboratory of Oil and Gas Resources and Exploration Technology, Ministry of Education, Jingzhou 434023, China; 6. School of Computer and Information, China Three Gorges University, Yichang 443002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    声波测井资料在层位标定和储层反演等工作中发挥着重要作用。然而受仪器设备、地质环境等条件的限制,实际得到的声波测井曲线常有失真现象。为了向油气藏勘探提供可靠的数据支持,提高储层预测的准确性,提出一种参数优选残差网络下的井震联合反演方法,对失真的声波测井曲线予以重构。考虑到传统人工神经网络无法表达出井震间的强非线性关系,该方法以深度学习中的残差网络(Residual Network, ResNet)构建智能反演模型,通过网络设计、参数选择以及模型训练,找到井震间更好的映射表达。同时综合考虑测井曲线的特点与均方损失的不足,设计了一种代价敏感损失函数Fusion,进一步提高模型整体的反演精度。在真实地震数据和测井资料上展开实验,并与全连接神经网络(Fully Connected Neural Network, FCNN)和多元回归分析(Multiple Linear Regression, MLR)的反演结果对比分析,表明所提方法反演的声波测井曲线精度更高,相关系数达到0.912,均方根误差减小到13.399。将所提Fusion损失用于反演声波测井曲线,相关系数增加了2.5%,均方根误差减小了17.4%。

    Abstract:

    Acoustic logging data plays an important role in horizon calibration and reservoir inversion. However, due to the limitations of equipment and geological environment, the actual acoustic logging curve is often distorted. To provide reliable data support for oil and gas exploration and improve the accuracy of reservoir prediction, a well-to-seismic joint inversion method based on parameter optimization residual network is proposed to reconstruct the distorted acoustic logging curve. Considering that the traditional artificial neural network cannot express the strong nonlinear relationship between well and seismic, this method uses the residual network (ResNet) in deep learning to build an intelligent inversion model. Through network design, parameter selection and model training, a better mapping expression between well and seismic can be found. Considering the characteristics of logging curve and the deficiency of MSE loss, a cost-sensitive loss function Fusion is designed to further improve the overall inversion accuracy of the model. Experiments are carried out on real seismic data and logging data, compared with the inversion results of Fully Connected Neural Network (FCNN) and Multiple Linear Regression (MLR), it shows that the accuracy of the acoustic logging curves inverted by the proposed method is higher, the correlation coefficient reaches 0.912, and the root mean square error is reduced to 13.399. Using the proposed Fusion loss to invert the acoustic logging curve, the correlation coefficient increases by 2.5%, and the root mean square error decreases by 17.4%.

    参考文献
    相似文献
    引证文献
引用本文

郑杰,文畅,谢凯,盛冠群.参数优选残差网络下的井震联合反演方法[J].电子测量技术,2022,45(12):168-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-17
  • 出版日期:
文章二维码