基于一维CNN的时域超声信号识别技术研究
DOI:
CSTR:
作者:
作者单位:

1.中北大学 信息与通信工程学院 太原 030051;2.山西省古建筑与彩塑壁画保护研究院 太原 030000

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家重点研发计划“制造基础技术与关键部件”重点专项:子课题“曲面基底高温薄膜传感器研究”(2020YFB2009102)


Research on time-domain ultrasonic signal recognition technology based on one-dimensional CNN
Author:
Affiliation:

1.School of Information and Communication Engineering,North University of China,Taiyuan 030051,China;2. Shanxi Ancient Architecture and painted Mural Protection Research Institute,Taiyuan 030000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    超声检测缺陷是一种主流的缺陷识别手段,二维卷积神经网络一直是该领域的主要技术,一般从二维C扫、D扫等图像中提取属性特征来进行识别分类,这些研究主要采用二维卷积层,会产生较大的资源消耗。在所有类型的缺陷识别方法中,超声回波信号分析是最主要和有用的工具之一,本研究从原始时域超声信号中提取特征,首先使用来自实验室的JPR-600C空气耦合超声波无损检测系统采集数据;然后通过使用不同的超参数进行实验、t-sne可视化等手段构建并优化一维CNN网络模型;最后实现超声信号缺陷识别分类。实验结果表明,所提出的CNN模型的性能令人满意,缺陷识别准确率为97.57%,高于其他机器学习方法,为实现缺陷识别自动化的需要提供辅助。

    Abstract:

    Ultrasonic defect detection is a mainstream means of defect recognition, and two-dimensional convolution neural network has always been the main technology in this field. Generally, attribute features are extracted from two-dimensional C-scan, D-scan and other images for recognition and classification. These studies mainly use two-dimensional convolution layer, which will consume a lot of resources. Among all kinds of defect identification methods, ultrasonic echo signal analysis is one of the most important and useful tools. In this study, features are extracted from the original time domain ultrasonic signals, firstly, the data are collected using the JPR-600C air-coupled ultrasonic nondestructive testing system from the laboratory, and then the one-dimensional t-sne network model is constructed and optimized by using different hyperparameters, t-sne visualization and other means. Finally, ultrasonic signal defect recognition and classification is realized. The experimental results show that the performance of the CNN model proposed in this paper is better, and the correct rate of defect identification is 97.57%, which is higher than other machine learning methods, which provides some assistance for the automation of defect recognition.

    参考文献
    相似文献
    引证文献
引用本文

韩晓东,李光亚,胡雅妮,简丽,张国花.基于一维CNN的时域超声信号识别技术研究[J].电子测量技术,2022,45(12):20-25

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-17
  • 出版日期:
文章二维码