基于KNN分类算法的n-γ脉冲信号甄别仿真研究
DOI:
CSTR:
作者:
作者单位:

贵州大学,大数据与信息工程学院 贵阳550025

作者简介:

通讯作者:

中图分类号:

TL8

基金项目:

贵州省科技计划项目(黔科合LH字[2017]7225号)


Simulation of n-γ Pulse Signal Discrimination based on KNN Classification Algorithm
Author:
Affiliation:

School of Big Data and Information Engineering, GuiZhou University, GuiZhou 550025

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用脉冲形状甄别(PSD)法区分中子和γ射线脉冲信号是核探测过程中一项重要的任务。本文基于Labview平台实现了n/γ脉冲信号的仿真及信号预处理过程,分别利用传统的甄别方法电荷比较法、脉冲梯度分析(PGA)法及上升时间法对所产生的n/γ脉冲信号进行甄别,筛选出以上三种甄别方法结果一致的中子和γ射线混合脉冲信号作为KNN分类算法的训练集。通过训练样本构建KNN分类模型,使得能够通过该模型实现中子和γ射线脉冲信号的分类。结果表明,基于KNN分类算法的中子和γ射线脉冲信号甄别准确率高达99.58%,与电荷比较法,上升时间法和PGA方法相比,甄别错误率显著降低。并且KNN分类算法原理简单,易于实现,因此可应用于实际混合场中的n-γ脉冲甄别。

    Abstract:

    Using pulse shape discrimination (PSD) to distinguish between neutrons and gamma rays is an important task in the process of nuclear detection.. Based on the Labview platform, this paper realizes the simulation and signal preprocessing process of n/γ pulse signal. The traditional discrimination method, charge comparison method, pulse gradient analysis (PGA) method, and rise time method are used to perform the n/γ pulse signal screening, screening out the neutron and γ-ray mixed pulse signals with the same results of the above three screening methods as the training set of the KNN classification algorithm. The KNN classification model is constructed by training samples, so that the classification of neutron and gamma-ray pulse signals can be realized through this model. The results show that the accuracy of neutron and gamma-ray pulse waveform discrimination based on the KNN classification algorithm is as high as 99.58%. Compared with the charge comparison method, the rise time method and the PGA method, the discrimination error rate is significantly reduced. And the KNN classification algorithm is simple in principle and easy to implement, so it can be applied to the discrimination of n-γ pulses in the actual mixed field.

    参考文献
    相似文献
    引证文献
引用本文

汪炫羲,唐清岭,蒋小菲.基于KNN分类算法的n-γ脉冲信号甄别仿真研究[J].电子测量技术,2022,45(13):164-170

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-11
  • 出版日期:
文章二维码