基于均匀设计的电池组液冷结构多目标优化
DOI:
CSTR:
作者:
作者单位:

青岛理工大学机械与汽车工程学院,山东青岛,266500

作者简介:

通讯作者:

中图分类号:

TM912

基金项目:


Multi-objective optimization of battery pack liquid cooling structure based on uniform design
Author:
Affiliation:

School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, Shandong, 266500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了获得动力电池组蛇形液冷结构的合理参数,提出了一种均匀设计法、BP神经网络算法以及多目标遗传算法相结合的动力电池组液冷结构优化设计方法。首先进行了单体电池温升试验,对电芯仿真计算模型进行了验证,为均匀设计试验与参数处理的数据准确性提供支持。然后以电池组温差与液冷结构压降为设计目标,以冷却液入口质量流量、冷却液入口口径及液冷管管道宽度为设计参数,通过均匀设计试验进行CFD仿真,获取液冷结构具体参数,并通过BP神经网络算法进行训练获得设计目标与设计参数之间代理模型。最后通过NGSA-Ⅱ多目标遗传算法对该代理模型进行计算获得Pareto解集,根据工程经验选取Pareto最优解进行优化结果验证和优化前后仿真结果对比。仿真结果表明:电池组最高温度降低5.06℃,降幅为14.3%;电池组最大温差降低4.88℃,较优化前下降51.5%;液冷结构压降上升122.8%,解决了负压问题,减小了冷却液压力损耗,验证了该优化方法的有效性。

    Abstract:

    In order to obtain reasonable parameters for the serpentine liquid-cooled structure of the power battery pack, an optimal design method for the liquid-cooled structure of the power battery pack combining the uniform design method, BP neural network algorithm and multi-objective genetic algorithm is proposed. Firstly, a single cell temperature rise test is carried out to verify the cell simulation calculation model and provide support for the data accuracy of uniform design test and parameter processing. Then it was determined that the temperature difference of the battery pack and the pressure drop of the liquid cooling structure were the design objectives, and the coolant inlet mass flow rate, coolant inlet diameter and liquid cooling tube pipe width were the design parameters. CFD simulation was conducted through uniform design test to obtain the specific parameters of the liquid cooling structure, and the agent model between the design objectives and the design parameters was obtained by training with BP neural network algorithm. Finally, the NGSA-II multi-objective genetic algorithm is used to calculate the proxy model to obtain the Pareto solution set, and the optimal Pareto solution is selected according to the engineering experience to verify the optimization results and compare the simulation results before and after optimization. The comparison results before and after optimization show that: the maximum temperature of the battery pack is reduced by 5.06℃, with a decrease of 14.3%; the maximum temperature difference of the battery pack is reduced by 4.88℃, with a decrease of 51.5% compared with that before optimization; the pressure drop of the liquid cooling structure is increased by 122.8%, which solves the negative pressure problem and reduces the coolant pressure loss, which verifies the effectiveness of the optimization method.

    参考文献
    相似文献
    引证文献
引用本文

李昕光,元佳宇,王文超.基于均匀设计的电池组液冷结构多目标优化[J].电子测量技术,2022,45(13):33-39

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-11
  • 出版日期:
文章二维码