基于FPGA加速的行为识别算法研究
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学 电子与信息工程学院 南京 210044 2. 南京信息工程大学 人工智能学院 南京 210044

作者简介:

通讯作者:

中图分类号:

TP302

基金项目:

国家自然科学基金(61601230)项目资助


Research on Activity Recognition Algorithm Based on FPGA Acceleration
Author:
Affiliation:

1.School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044,China ;2.School of Artificial Intelligence, Nanjing University of Information Science and Technology,Nanjing 210044,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高行为识别算法的实时性,适用于资源有限的嵌入式设备,提出了一种行为识别算法硬件加速方法,并在FPGA平台实现。传统的基于可穿戴传感器的行为识别算法需要严格标记的数据进行训练分类,但传感器序列的标注过程消耗大量的人力和计算资源,针对该问题,在传统的卷积神经网络模型中引入注意力机制,用于基于弱标签数据的行为识别。算法中的卷积、池化和注意力机制等计算模块使用高层次综合设计。针对模型的运算特性,通过流水线约束、多像素多通道并行计算和数据定点化等方法,提升运算速度。在Ultra96_V2平台上使用弱标签数据集进行实验,实验结果表明:所设计的行为识别系统识别准确率达到了90%的同时,计算速度达到25.89frams/s,相较于ARM_A53处理器实现了54.15倍的加速效果。系统的平均功耗为2.204W,功耗效率为11.75 frames/J,满足了低功耗、低延时设计要求。

    Abstract:

    In order to improve the real-time performance of the activity recognition algorithm and be suitable for embedded devices with limited resources, a hardware acceleration method of the activity recognition algorithm was proposed and implemented on the FPGA platform. Traditional wearable sensor-based behavior recognition algorithms require strictly labeled data for training and classification, but the labeling process of sensor sequences consumes a lot of manpower and computing resources. To solve this problem, an attention mechanism is introduced into the traditional convolutional neural network model. , for action recognition based on weakly labeled data. Computational modules such as convolution, pooling, and attention mechanisms in the algorithm use a high-level comprehensive design. According to the operation characteristics of the model, the operation speed is improved by pipeline constraints, multi-pixel and multi-channel parallelization, and data fixed-pointization. Experiments are carried out on the Ultra96_V2 platform, and the experimental results show that the designed behavior recognition system has a recognition accuracy of 90% and a computing speed of 25.89frams/s, which is 54.15 times faster than that of a single-core ARM_A53 processor. The average power consumption of the system is 2.204W and the power efficiency is 11.75frams/s, which meets the design requirements of low power consumption and low delay.

    参考文献
    相似文献
    引证文献
引用本文

吴宇航,何军.基于FPGA加速的行为识别算法研究[J].电子测量技术,2022,45(13):25-32

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-11
  • 出版日期:
文章二维码