面向大型室内场景的无人机三维激光雷达解耦SLAM方法
DOI:
CSTR:
作者:
作者单位:

1.南京航空航天大学 南京 211106;2.北京数码易知科技发展有限责任公司 北京 100007; 3.中国船级社 北京 100007

作者简介:

通讯作者:

中图分类号:

V249.32

基金项目:

科技部“国家重点研发计划科技助力经济2020重点专项”——“5G+工业互联网”船舶远程检验示范应用(国科发资[2020]79号)资助


Decoupling SLAM method based on UAV 3d lidar for large indoor scenes
Author:
Affiliation:

1.Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; 2.Beijing Digital Easy Technology Development Co.,Ltd., Beijing 100007, China; 3.China Classification Society, Beijing 100007, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大型室内场景通常在高程方向结构较为相似,导致激光雷达扫描点云在高程方向特征退化,传统激光雷达SLAM的无人机定位方法易发生高程特征误匹配。针对于此,提出了一种基于惯性/高度传感器信息辅助的机载三维激光雷达解耦SLAM算法:将高度传感器、惯性姿态引入点云初始化过程,提高初始位姿匹配精度;将基于多元正态分布的点云配准算法在水平、高度通道解耦,约束点云配准方向,提高高程退化环境下的定位精度;同时使得传统SLAM六维位姿解算降为三维,降低了计算量。通过Gazebo构建船舱仿真场景,对提出的方法进行验证,结果表明本文方法可以提高在高程特征退化下的激光雷达SLAM定位精度,比传统算法提升40%以上,并有效提高了计算效率。

    Abstract:

    Large indoor scenes usually have similar structures in the elevation direction, which leads to the degradation of the features of lidar scanning point clouds in the elevation direction, and the traditional lidar SLAM is prone to the mismatch of elevation features. In view of this, a decoupling SLAM algorithm for airborne 3D lidar based on inertial/altitude sensor information assistance is proposed: altitude sensor and inertial attitude are introduced into the point cloud initialization process to improve the initial pose matching accuracy; Decouple the point cloud registration algorithm based on multivariate normal distribution in horizontal and height channels, restrict the direction of point cloud registration, and improve the positioning accuracy in the environment of elevation degradation; At the same time, the traditional SLAM six-dimensional pose solution is reduced to three-dimensional, which reduces the amount of calculation. The cabin simulation scene is built by Gazebo, and the proposed method is verified. The results show that the proposed method can improve the positioning accuracy of lidar SLAM under the degradation of elevation features, which is more than 40% higher than the traditional algorithm, and effectively improves the calculation efficiency.

    参考文献
    相似文献
    引证文献
引用本文

付 林,郑佳楠,何洪磊,向林浩,吕 品,赖际舟.面向大型室内场景的无人机三维激光雷达解耦SLAM方法[J].电子测量技术,2022,45(13):96-103

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-11
  • 出版日期:
文章二维码