基于ICOA-LSTM的短期负荷预测研究
DOI:
CSTR:
作者:
作者单位:

1.新疆大学 电气工程学院 乌鲁木齐 830017;2.国网新疆电力公司 乌鲁木齐 830017

作者简介:

通讯作者:

中图分类号:

TM714

基金项目:

国家自然科学基金资助项目(51762038)


Research on short-term load forecasting based on ICOA-LSTM
Author:
Affiliation:

1. School of Electrical Engineering, Xinjiang University, Urumqi Xinjiang830017, China, 2. Department of State Grid Xinjiang Electric Power Co., Ltd., Urumqi Xinjiang830017, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    精准的负荷预测有利于电力系统的稳定运行,提高经济性和可靠性。为了提高短期电力负荷的预测精度,提出了一种基于改进型黑猩猩算法优化长短时记忆网络的短期负荷预测模型。由于黑猩猩优化算法存在易陷入局部最优、寻优精度低等缺陷,采用Circle映射策略初始化种群,产生分布均匀的黑猩猩种群,提高黑猩猩种群的多样性,为全局寻优奠定基础;其次,引入螺旋位置更新策略,使黑猩猩种群有多种搜索路径,扩大搜索空间,提高种群的全局搜索能力;然后,引入Levy飞行策略和自适应t变异策略,在最优解位置进行扰动变异,增强抗局部极值能力,提高算法的收敛精度。针对LSTM网络的隐含层神经元数,学习率等参数较难选取的问题,利用ICOA对LSTM网络自动寻找最优参数,建立ICOA-LSTM负荷预测模型。结合某地区的实际数据进行预测分析,结果表明,与BP、LSTM、PSO-LSTM、COA-LSTM预测方法相比,ICOA-LSTM模型具有更高的短期电力负荷预测精度,其预测平均绝对误差为17.01kW,均方根误差为21.80kW,平均绝对百分比误差为0.37%。

    Abstract:

    Accurate load forecasting is beneficial to the stable operation of the power system, improving economy and reliability. In order to improve the short-term power load forecasting accuracy, a short-term load forecasting model based on the improved chimp optimization algorithm to optimize long-short-term memory network is proposed. Because the chimp optimization algorithm is prone to fall into local optimum and has low optimization accuracy, the Circle mapping strategy is used to initialize the population to generate a uniformly distributed chimp population, improve the diversity of the chimp population, and lay the foundation for global optimization; secondly, the introduction of a spiral The position update strategy enables the chimp population to have multiple search paths, expand the search space, and improve the global search ability of the population; then, the Levy flight strategy and the adaptive t mutation strategy are introduced to perform disturbance mutation at the optimal solution position to enhance resistance to local extremes. It can improve the convergence accuracy of the algorithm. Aiming at the problem that parameters such as the number of hidden layer neurons and the learning rate of the LSTM network are difficult to select, ICOA is used to automatically find the optimal parameters for the LSTM network, and an ICOA-LSTM load prediction model is established. Combined with the actual data of a certain area, the prediction analysis is carried out. The results show that compared with the BP, LSTM, PSO-LSTM, and COA-LSTM prediction methods, ICOA-LSTM model has higher short-term power load forecasting accuracy, its forecast mean absolute error is 17.07kW, the root mean square error is 21.80kW, and the mean absolute percentage error is 0.37 %.

    参考文献
    相似文献
    引证文献
引用本文

高 超,孙谊媊,赵洪峰,曹培芳.基于ICOA-LSTM的短期负荷预测研究[J].电子测量技术,2022,45(13):88-95

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-11
  • 出版日期:
文章二维码