基于PSO优化LSTM神经网络的机械臂逆运动学求解研究
DOI:
CSTR:
作者:
作者单位:

河南工业大学电气工程学院 河南郑州 450001

作者简介:

通讯作者:

中图分类号:

TP242

基金项目:

河南省科技攻关项目(182102210088)


Optimization of LSTM neural network based on PSO research on inverse kinematics solution of manipulator
Author:
Affiliation:

School of Electrical Engineering,Henan University of Technology,Zhengzhou Henan 450001,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对机械臂逆运动学求解时使用传统解法实时性差,使用传统神经网络求解精度不高的问题,本文提出了一种利用粒子群算法(PSO)优化长短期记忆神经网络(LSTM)的逆运动学求解模型。首先建立串联式六自由度机械臂的模型进行运动学分析,获取训练数据,然后利用粒子群算法对长短期记忆网络的隐藏层神经单元数和学习率迭代寻优,参数优化后的LSTM学习机械臂末端执行器位姿与关节变量的映射关系,最后通过训练好的PSO-LSTM模型对机械臂的关节变量值进行预测得到逆运动学解。实验结果表明,模型的逆运动学求解速度维持在10 ms以内,与传统解法相比提高了数十倍,且模型的均方误差低至0.001,在提高求解速度的同时还能够保证求解精度。

    Abstract:

    In order to solve the inverse kinematics of manipulator with poor real-time performance and low precision, a particle swarm optimization (PSO) algorithm for LSTM was proposed in this paper.Firstly, the model of the series 6-DOF manipulator is established for kinematic analysis, and the training data are obtained. Next, Optimizing the quantity of hidden level neural units and learning percentage of the long-term and short-term memory network by PSO. LSTM after parameter optimization learns the mapping relationship between the position and pose of the manipulator's end effector and joint variables. Finally, the trained PSO-LSTM model is used to predict the joint variables of the manipulator to obtain the inverse kinematics solution. The experimental results show that the inverse kinematics solution speed of the model is kept within 10 ms, which is tens of times higher than that of the traditional solution, and the mean square error of the model is as low as 0.001, which can not only improve the solution speed but also ensure the solution accuracy.

    参考文献
    相似文献
    引证文献
引用本文

孙燕成,陈富安.基于PSO优化LSTM神经网络的机械臂逆运动学求解研究[J].电子测量技术,2022,45(13):40-45

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-11
  • 出版日期:
文章二维码