应用于绝缘子缺陷检测的轻量化YOLOv4研究
DOI:
CSTR:
作者:
作者单位:

华北电力大学控制与计算机工程学院 保定 071003

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Research on lightweight YOLOv4 applied to insulator defect detection
Author:
Affiliation:

School of Control and Computer Engineering, North China Electric Power University, Baoding,071003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对YOLOv4主干网络庞大、参数量多,应用于绝缘子缺陷检测中无法满足实时性要求的问题,提出一种轻量化的YOLOv4检测模型。首先,引入含ECA集成组件的GhostNet作为特征提取网络,保证特征提取能力的同时大幅减少模型参数,加快模型推理速度。其次,使用K-means++聚类算法确定出初始锚框尺寸,以适应绝缘子缺陷大小,提升缺陷定位精度。最后,在交叉熵损失函数的基础上引入Quality Focal Loss改进损失函数,进一步提升模型检测性能。实验结果表明,改进后的轻量化YOLOv4与原始YOLOv4相比,模型大小压缩至原来的62.47%,每秒帧率提升了68.83%,绝缘子缺陷检测的准确率提升了1.07%,在显著提升检测速度的同时保证了算法检测精度,且在小目标和复杂背景下表现突出。

    Abstract:

    Aiming at the problem that YOLOv4 has a huge backbone network and a large number of parameters, it cannot meet real-time requirements when applied to insulator defect detection. A lightweight YOLOv4 detection model is proposed. First, GhostNet with ECA integrated components is introduced as the feature extraction network, which greatly reduces the model parameters and speeds up the model inference while ensuring the feature extraction capability. Secondly, the K-means++ clustering algorithm is used to determine the initial anchor frame size to adapt to the size of the insulator defect and improve the accuracy of defect location. Finally, on the basis of the cross-entropy loss function, the Quality Focal Loss is introduced to improve the loss function to further improve the model detection performance. Experimental results show that compared with the original YOLOv4, the improved lightweight YOLOv4 has a reduced model size of 62.47%, Frames Per Second increased by 68.83%, and the accuracy of insulator defect detection has increased by 1.07%, significantly improving the detection speed. At the same time, the detection accuracy of the algorithm is guaranteed, and it performs outstandingly in small targets and complex backgrounds.

    参考文献
    相似文献
    引证文献
引用本文

马进,白雨生.应用于绝缘子缺陷检测的轻量化YOLOv4研究[J].电子测量技术,2022,45(14):123-130

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-08
  • 出版日期:
文章二维码