基于特征向量提取的点云配准算法
DOI:
CSTR:
作者:
作者单位:

1.中国科学院光电技术研究所,成都 610209; 2.中国科学院空间光电精密测量技术重点实验室,成都 610209; 3.中国科学院大学,北京 100049

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Point cloud registration algorithm based on feature vector extraction
Author:
Affiliation:

1. Institute of Optics and Electronics, Chinese Academy of Sciences,Chengdu 610209, China; 2. Key Laboratory of Science and Technology on Space Optoelectronic Precision Measurement, Chinese Academy of Sciences, Chengdu 610209, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高现有配准算法精度和配准效率,提出了一种基于点云特征向量提取的点云配准算法。该算法利用点曲率和邻域内点数量作为综合判据筛选特征点,然后对特征点进行主成分分析提取特征向量,利用特征向量变换关系求解待配准点云之间的变换矩阵实现粗配准,精配准阶段创建点云k维二叉树,通过k维二叉树最近邻搜索来提高ICP算法精配准效率。为验证算法的有效性,将本文算法与多种配准算法在公开数据集Bunny和Horse以及实测环境点云数据进行配准实验对比分析,实验结果表明,计算时间相较于ICP算法减少60%,所提算法具有良好的精度和配准效率。

    Abstract:

    In order to improve the accuracy and efficiency of existing registration algorithms, a point cloud registration algorithm based on point cloud feature vector extraction was proposed. The point curvature and the number of points in the neighborhood are used as comprehensive criterion to filter feature points, and then feature vectors are extracted by principal component analysis of feature points. The transformation relationship of feature vectors is used to solve the transformation matrix between the point clouds to achieve rough registration of point clouds. In the precise registration, the point cloud k-dimensional binary tree is created, and the nearest neighbor search by the k-dimensional binary tree is used to improve the precision registration efficiency of the ICP algorithm. The proposed algorithm was compared with a variety of algorithms in the public data sets Bunny and Horse and the measured environmental point cloud data to verify the effectiveness. The results show that computation time is reduced by 60% compared with ICP algorithm, and the proposed algorithm has good accuracy and registration efficiency.

    参考文献
    相似文献
    引证文献
引用本文

冯田,冯志辉,南亚明,雷铭.基于特征向量提取的点云配准算法[J].电子测量技术,2022,45(15):57-62

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-08
  • 出版日期:
文章二维码