基于改进CenterNet的自动驾驶小目标检测
DOI:
CSTR:
作者:
作者单位:

河北工业大学 机械工程学院 天津 300401

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

天津市新一代人工智能科技重大专项项目(18ZXZNGX00230)资助


Automatic driving small target detection based on improved CenterNet
Author:
Affiliation:

College of Mechanical Engineering,Hebei University of Technology,Tianjin 300401,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    自动驾驶领域主流目标检测算法对小目标检测效果差,给行车安全带来了威胁,对单阶段无描框CenterNet算法进行改进以解决此问题。首先,替换原主干网络为具有分裂注意力机制的ResNeSt50网络,并将ReLU激活函数升级为FReLU,以极少的额外计算开销强化了特征提取效果;然后提出轻量级网络PASN融合不同尺度的语义特征,并在浅层特征输入端引入空间池化金字塔(SPP)模块强化小目标信息的表达;最后在Kitti数据集进行随机多尺度输入训练。验证集结果表明改进后算法的FPS达到37.7满足实时性要求,小目标检测精度较原算法提12.9%,平均检测精度提升13.9%,同时检测速度与精度均高于主流算法Yolov4;在实车上每秒可检测31帧图像,为自动驾驶技术发展提供有力支持,具有工程应用价值。

    Abstract:

    The mainstream target detection algorithms in the field of automatic driving have poor detection effect on small targets, which poses a threat to driving safety. The one-stage anchor-free CenterNet algorithm is improved to solve this problem. Firstly, the original backbone network is replaced by ResNeSt50 network with split-attention mechanism, and the ReLU activation function is upgraded to FReLU, which strengthens the effect of feature extraction with little additional computational overhead; Then, a lightweight network PASN is proposed to fuse semantic features of different scales, and Spatial Pooling Pyramid (SPP) module is introduced into the shallow feature input to enhance the expression of small target information; Finally, random multi-scale input training is carried out on Kitti data set. The verification set results shows that the FPS of the improved algorithm reaches 37.7, meets the real-time requirements, the average precision of small targets is improved by 12.9% and the mean average precision is improved by 13.9%, At the same time, the detection speed and average precision are higher than the mainstream algorithm Yolov4;It can detect 31 images per second on the real vehicle, which provides strong support for the development of automatic driving technology and has engineering application value.

    参考文献
    相似文献
    引证文献
引用本文

于方程,张小俊,张明路,赵天亮.基于改进CenterNet的自动驾驶小目标检测[J].电子测量技术,2022,45(15):115-122

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-08
  • 出版日期:
文章二维码