一种基于特征重用金字塔的舰船检测算法
DOI:
CSTR:
作者:
作者单位:

中北大学信息与通信工程学院 太原 030051

作者简介:

通讯作者:

中图分类号:

TP751

基金项目:


A Ship Detection Algorithm Based on Feature Reuse Pyramid
Author:
Affiliation:

North University of China, School of information and communication engineering, Taiyuan 030051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有算法在SAR图像舰船目标检测场景中难以提取模糊目标特征的问题,提出一种基于特征重用金字塔的舰船目标检测算法。所提算法以YOLOV4-tiny为主体,首先将线性因子引入到K-Means算法中整合初始锚框,加强网络对多尺度目标的适应性;其次在主干CSPDarknet53-tiny中添加注意力机制来抑制干扰信息,减弱复杂背景的影响;最后利用特征重用机制强化特征金字塔,提升网络对模糊目标特征的提取能力。实验结果表明,相较于YOLOV4-tiny网络,改进后的算法在SSDD数据集上的平均检测精度提升11.79%,证明了改进后算法在舰船检测中的有效性。

    Abstract:

    Aiming at the problem that the existing algorithms are difficult to extract fuzzy target features in the SAR image ship target detection scene, a ship target detection algorithm based on feature reuse pyramid is proposed. The proposed algorithm takes YOLOV4-tiny as the main body. First, a linear factor is introduced into the K-Means algorithm to integrate the initial anchor frame to enhance the adaptability of the network to multi-scale targets. Secondly, an attention mechanism is added to the backbone CSPDarknet53-tiny to suppress interference. information, and weaken the influence of complex background; finally, the feature reuse mechanism is used to strengthen the feature pyramid and improve the network's ability to extract fuzzy target features. The experimental results show that, compared with the YOLOV4-tiny network, the average detection accuracy of the improved algorithm on the SSDD dataset is improved by 11.79%, which proves the effectiveness of the improved algorithm in ship detection.

    参考文献
    相似文献
    引证文献
引用本文

卢鑫凯,王肖霞,杨风暴,刘 哲.一种基于特征重用金字塔的舰船检测算法[J].电子测量技术,2022,45(16):109-115

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-07
  • 出版日期:
文章二维码