基于多通道采样和注意力重构的图像压缩感知
DOI:
CSTR:
作者:
作者单位:

上海大学通信与信息工程学院 上海 200444

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Image Compressive Sensing Based On Multi-channel Sampling And Attention Reconstruction
Author:
Affiliation:

School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来用于图像压缩感知的深度学习网络得到广泛关注,深度学习网络可以实现图像的压缩采样,并从采样数据重构出原始图像。但现有的压缩感知算法在信息分布不均匀的图像场景中,无法有效提取原始图像信息,导致重构精度较低。针对上述问题,本文提出了基于多通道采样和注意力重构的图像压缩感知算法。该算法包含了多个不同采样率的采样通道,能够根据视觉显著性对图像不同区域应用不同的采样率,使得采样数据中能够包含更多原始图像信息。重构采用了残差通道注意力结构,自适应调整通道特征来提高网络的表示能力。通过对比实验表明,本文提出的基于多通道采样和注意力重构的图像压缩感知算法能够取得更好的重构质量与视觉观感。

    Abstract:

    Recently, deep learning networks for image compressive sensing have received a great deal of attention. Deep learning networks can achieve compressed sampling of images and reconstruct the original image from the sampled data. However, the existing compressive sensing algorithms cannot effectively extract original image information in image scenes with uneven information distribution, resulting in low reconstruction accuracy. To address the above problem, this paper proposes an image compressive sensing algorithm based on multi-channel sampling and attention reconstruction. The algorithm includes multiple sampling channels that can apply different sampling rates to different regions of the image according to visual saliency, so that the sampling data can contain more original image information. The reconstruction adopts the residual channel attention structure, which can adaptively adjust the channel features to improve the representation ability of the network. The comparative experiments show that the image compressive sensing algorithm based on multi-channel sampling and attention reconstruction proposed in this paper can achieve better reconstruction quality and visual perception.

    参考文献
    相似文献
    引证文献
引用本文

侯保军,田金鹏,杨洁,邓江峰,曾凤珍.基于多通道采样和注意力重构的图像压缩感知[J].电子测量技术,2022,45(16):102-108

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-07
  • 出版日期:
文章二维码