基于改进的YOLOv5网络的异常行为检测算法研究
DOI:
CSTR:
作者:
作者单位:

1.青岛科技大学 自动化与电子工程学院 山东 青岛 266061;2.青岛科技大学 机电工程学院 山东 青岛 266061

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家海洋局重大专项项目 (国海科字[2016]494号No.30)


Research on abnormal behavior detection algorithm based on improved YOLOv5 network
Author:
Affiliation:

1.College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao; 266061, China;2. College of mechanical and electrical engineering, Qingdao University of Science and Technology, Qingdao; 266061, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    各行各业安全问题尤为重要,对人员的异常行为须及时检测并采取相应的措施才能有效预防安全事故的发生。因此本文提出基于改进的YOLOv5网络的异常行为识别算法,通过实时处理视频监控中人员的异常行为,从而保证企业的安全运行。首先,对输入数据集进行特征提取处理,本文使用YOLOv5的backbone特征提取网络提取视频特征,能够在不同图像细粒度上聚合并形成图像特征;其次,送入到时间注意块,因为不同时刻特征的贡献值并不相同,因此加入此模块赋予特征不同的贡献值;最后,送入特征预测网络,该网络由LSTM搭建,对历史特征序列进行解码,以预测当前的特征。以玩手机和吸烟为例对所提出的网络进行验证,训练集准确率高达96.42%,测试集准确率高达95.21%。

    Abstract:

    Safety problems in all walks of life are particularly important. Abnormal behaviors of personnel must be detected in time and corresponding measures must be taken to effectively prevent safety accidents. Therefore, this paper proposes an abnormal behavior recognition algorithm based on the improved yolov5 network, which can ensure the safe operation of the enterprise by dealing with the abnormal behavior of personnel in video monitoring in real time. Firstly, feature processing is carried out on the input data set. In this paper, the backbone feature extraction network of yolov5 is used to extract video features, which can aggregate and form image features on different image granularity; Secondly, it is sent to the time attention block. Because the contribution values of the features at different times are different, this module is added to give different contribution values to the features; Finally, it is sent to the feature prediction network, which is built by LSTM to decode the historical feature sequence to predict the current feature. Taking playing mobile phone and smoking as examples, the accuracy of the proposed network is as high as 96.42% in the training set and 95.21% in the test set.

    参考文献
    相似文献
    引证文献
引用本文

王 雪,程换新,骆晓玲,高宇.基于改进的YOLOv5网络的异常行为检测算法研究[J].电子测量技术,2022,45(16):137-141

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-07
  • 出版日期:
文章二维码