基于FFMILS-MIUKF联合算法的锂电池SOC估计
DOI:
CSTR:
作者:
作者单位:

1.安徽理工大学电气与信息工程学院;2.淮南师范学院机械与电气工程学院,安徽 淮南 232001

作者简介:

通讯作者:

中图分类号:

TM912

基金项目:

安徽省高校自然科学基金重点资助项目(KJ2019A0106);淮南市2021年重点研究与开发计划项目(2021A249)


SOC estimation of Lithium battery based on FFMILS-MIUKF algorithm
Author:
Affiliation:

1.School of Electrical and Information Engineering,Anhui University of Science and technology;2.School of Mechanical and Electrical Engineering, Huainan Normal University,Huainan Anhui 232001,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确估计SOC在防止锂电池过度充放电、提高锂电池能量利用率以及保障电池管理系统安全稳定运行方面具有重要意义。本文以三元锂电池为研究对象,提出一种基于多新息辨识理论的SOC估计方法,通过建立二阶RC等效电路模型,采用遗忘因子多新息最小二乘法(FFMILS)对模型参数进行在线辨识,结合多新息无迹卡尔曼滤波(MIUKF)算法估计锂电池的SOC,通过UDDS实验验证,并和EKF、UKF及MIUKF算法进行对比,实验结果表明,FFMILS-MIUKF算法估计锂电池SOC的误差控制在1.08%左右,其具有高精确性和快速收敛性。

    Abstract:

    Accurate estimation of SOC plays an important role in preventing excessive charge and discharge of lithium batteries, improving energy utilization rate of lithium batteries and ensuring safe and stable operation of battery management system. In this paper, a SOC estimation method based on multi-innovation identification theory is proposed for ternary lithium batteries. Adopting forgetting factor multi-innovation least square method for model parameter online identification by building a second order RC equivalent circuit model, multi-information unscented Kalman Filter algorithm was used to estimate the SOC of lithium batteries. Through Verified by UDDS experiment and were compared with EKF, UKF and MIUKF algorithm, the results indicate that FFMILS-MIUKF algorithm to estimate the error of the SOC control at around 1.08%, which has high accuracy and fast convergence.

    参考文献
    相似文献
    引证文献
引用本文

邢丽坤,詹明睿,郭敏,伍龙,仇伟文.基于FFMILS-MIUKF联合算法的锂电池SOC估计[J].电子测量技术,2022,45(16):53-60

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-07
  • 出版日期:
文章二维码