基于改进各向异性扩散的图像去噪算法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学 电子与信息工程学院 南京 210044; 2.南京信息工程大学 江苏省大气环境与装备技术协同创作中心 南京 210044; 3.南京信息工程大学 人工智能学院 南京 210044

作者简介:

通讯作者:

中图分类号:

TP751.1;TN911.73

基金项目:

国家自然科学基金资助项目(11202106,61302188);江苏省“信息与通信工程“优势学科建设项目;江苏高校品牌专业建设工程资助项目;国家级大学生创新创业训练计划项目(202110300057)资助


An improved anisotropic diffusion algorithm for the Research of Image Denoising
Author:
Affiliation:

1.School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2.Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China; 3. School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对纹理等细节信息丢失和图像边缘退化的问题,本文提出了一种基于范数的改进各向异性扩散模型。本文首先将PM模型和LCC模型相结合,根据图像梯度的变化,构建局部图像梯度模值与扩散强度之间的关系,不同的梯度模值选择不同的扩散函数;然后利用范数确定扩散函数中的梯度阈值,进一步提高去噪模型的泛化能力。实验结果表明,该模型不仅可以解决传统PM模型存在的孤立点问题,而且能够有效地保护图像边缘特征和轮廓结构的完整性,与原始算法相比图像信噪比提升了1.47~1.57dB,结构相似度提高了17%,在保证去噪效果的同时提高了去噪效率。

    Abstract:

    In order to solve the problem of texture loss and image edge degradation, an improved anisotropic diffusion model is proposed in this paper. Firstly, the PM model and LCC model are combined. According to the changes of image gradient, the relationship between the gradient modulus of local image and the diffusion intensity is constructed. Different gradient modulus values are selected for different diffusion functions. Then, the -norm is used to determine the gradient threshold in the diffusion function, which further improves the generalization ability of the proposed model. Experimental results show that this model can not only solve the problem of outliers existing in the traditional PM model, but also effectively protect the integrity of image edge features and contour structure. Compared with the original algorithm, the image signal-to-noise ratio is improved by 1.47~1.57dB, and the structural similarity is improved by 17%, the denoising efficiency is improved while ensuring the denoising effect.

    参考文献
    相似文献
    引证文献
引用本文

张心如,周先春,汪志飞,王文艳,杨传兵.基于改进各向异性扩散的图像去噪算法[J].电子测量技术,2022,45(17):113-119

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-02
  • 出版日期:
文章二维码